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Over the last decade, collecting massive volumes of data has been made all the more accessible, pushing
the building sector to embrace data mining as a powerful tool for harvesting the potential of big data ana-
lytics. However repetitive challenges still persist emerging from the need for a common analytical frame,
effective application- and insight-driven targeted data selection, as well as benchmarked-supported
claims. This study addresses these concerns by putting forward a generic stepwise multidimensional data
mining framework tailored to building data, leveraging the dimensional-structures of data cubes. Using
the open Building Data Genome Project 2 set, composed of 3053 energy meters from 1636 buildings, we
provide an online, open access, implementation illustration of our method applied to automated pattern
identification. We define a 3-dimensional building cube echoing typical analytical frames of interest,
namely, bottom-up, top-down and temporal drill-in approaches. Our results highlight the importance
of application and insight driven mining for effective dimensional-frame targeting. Impactful visualiza-
tions were developed allowing practical human inspection, paving the path towards more interpretable
analytics.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With Europe becoming climate neutral by 2050, meeting carbon
dioxide emission targets is being promoted as a major step
towards curtailing the rise of global heating. Increased renewable
energy shares in the existing energy power systems combined with
reduced energy consumption constitute a common adopted long
term energy strategy by most countries, including the Netherlands.
The International Energy Agency (IEA) indicates buildings to be the
largest energy consumer in the world, accounting for over one-
third of overall final energy consumption [1]. As a result, building
energy efficiency has become one of the main concerns for reach-
ing environmental and sustainability targets. The issue has drawn
increasing research and development efforts in recent years.
Advances in information systems, computing power and control
technologies for optimal resource management, have endowed
building automation systems (BAS) with enhanced energy savings
ranging from 20 to 35% [2], while generating a huge amount of data
from a wide range of appliances every day. These include essential
buildings indoor environment quality condition processes such as
ventilation, lighting, air conditioning and heating but also home
appliances such as dish washers, laundry, kitchen devices and
home entertainments.

Yet, BAS data are rarely fully exploited and interpreted. Improv-
ing building energy efficiencies with such pools of data remains a
challenge; how does one approach the analysis of various associa-
tions and correlations amongst multi-temporal, i.e., seconds to
hourly resolutions, with daily to decades horizons, and high
dimensional data?What methods to follow to acquire useful, inter-
pretable insights on building energy performance and reduce its
consumption? Such questions root upon causes usually involving
poor data quality, resulting from a large share of missing values
and outliers, coupled to lack of efficient and convenient analytical
tools & methods for large data sets. Additionally, most BASs only
perform basic data analytics and visualizations, such as historical
tracking, moving averages and threshold-based anomaly detec-
tions which have pushed the building automation industry to
new data driven methods and tools to harvest these data pools,
namely, data mining.
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1.1. Data mining

Data mining (DM) has grown from a promising technology to an
established powerful and effective analytical tool to interpret mas-
sive and complex data. In 2001, MIT reviewed DM as one of the top
10 emerging technologies that will change the world [3], while it
has now accumulated over a hundred thousand publication
records over the last 20 years in a wide variety of fields [4], includ-
ing medicine, retails telecommunication, financial services and tar-
get marketing [5]. In the building sector, the effervescence
surrounding the technology was such that recent reviews
employed text mining tools to fully uncover the extent of develop-
ments in the field [6]. DM is a multi-disciplinary subject, integrat-
ing combined techniques from statistics, machine learning and
artificial intelligence thanks to high performance computing. It is
the core process of identifying valid, useful and understandable
patterns from large and complex datasets, known as Knowledge
Discovery in Databases (KDD). The DM taxonomy established by
Oded and Lior [5] distinguishes two preeminent types of DM: ver-
ification oriented, where the system verifies a proposed hypothe-
sis, and discovery-oriented, where the system identifies new
rules and patterns autonomously. Verification methods include
traditional statistical tests such as goodness of fit test, test of
hypotheses (i.e. t-test of means, one sample Z-test), and analysis
of variance (ANOVA). Discovery methods, on the other hand, are
based on inductive learning, where a model is constructed from
generalized sufficient numbers of training examples, assuming its
applicability to future unseen data. Another terminology, widely
used within the machine learning community, preferably considers
discovery-oriented DM and separates the techniques into super-
vised and unsupervised learning. Supervised methods attempt to
discover complex and non-linear relationships between input
and output target attributes (referred to as independent and
dependent variables respectively) by learning from historical data.
This type of process largely composes the predictive learning com-
ponent of DM discovery methods. It has been applied to the build-
ing operational stage [7] as it is directly linked to occupant comfort
and responsible for 80–90% of the building’s total green gas emis-
sions [8]. Applications of supervised learning notably include pre-
dictions of building energy consumption [9–12], thermal load
[13,14], indoor environment [15,16], and system performance
indices [17–19]. Popular supervised methods comprise two pre-
dominant groups: classification [20] and regression [21]. Unsuper-
vised learning, also recognized as descriptive learning, groups
techniques used to organize instances without pre-specified attri-
butes. It aims at finding underlying associations or data structures
between variables. The prominent advantage of unsupervised ana-
lytics is its ability to discover formerly unknown knowledge
[22,23]. Well established techniques involve clustering, association
rule mining (ARM) and anomaly detection. Visualization and sum-
marization techniques, for instance, are DM descriptive methods
that are not regarded as unsupervised learning. In opposition to
predictive learning, descriptive learning can be viewed as a more
flexible application that does not require model training or prede-
fined targets during knowledge discovery. Its main applications
encompass fault/anomaly detection and building performance
diagnostics [24–26].

1.2. Cube multidimensional analytics

Dealing with the large volumes, velocities and varieties charac-
terizing high-dimensional big building data is a complex task.
Common analytical tools developed to tackle multidimensional
data rely on exploring different dimensional associations at differ-
ent levels of aggregation leveraging the structures of a data cube
[22]. A data cube is defined as a multidimensional data model
2

allowing data exploration from its structured dimensions, i.e. di-
mension table and facts. A data cube is commonly organized around
a central theme, represented by a fact table, which contains names
of the different facts, or numeric values, and relational attribute
keys. For example, a building fact table could include time, location
or energy flow attribute keys linking them to their dimension table.
Given a fixed set of dimensions, a cuboid can be generated for each
subset of the given dimensions. Their combinations result in a lat-
tice of cuboids, presenting the data at specific levels of summariza-
tion from which a multi-dimension analytical map can be defined.
Cuboids forming the lowest level of summarization are denoted
base cuboid, while the 0-D cuboid, holding the highest level of sum-
marization, is designated the apex cuboid (typically referred to by
all) [22,27]. This lattice of cuboids defines the data cube. While
data cubes are commonly represented as 3-D geometrical struc-
tures, they are naturally n-dimensional, where each dimension
represents objects intended to keep record off. In BAS data, hierar-
chical relationships are often found within dimension tables, e.g.,
the time dimension includes a natural tree structure rooted on
the year attribute, and progressively branching out to months,
weeks, days, hours. Other hierarchically structured dimensions typ-
ically include geographical location and site measurements.

Multidimensional cube space analytics rely on the high-
dimensional structure of the data to explore multi-lattice and
abstraction levels of the cube. Common dimensional exploration
methods rely on bottom-up, top-down approaches, namely rollup,
where fine granularities are gradually aggregated in coarser ones,
and drilldown, starting from coarser dimensional granularities
down to finer ones. This navigation across multiple cube spaces
of interest is called OnLine Analytical Processing (OLAP) [27]. By
summarizing & aggregating data subsets at different abstraction
levels, this tool has greatly assisted multidimensional analytics.
Leveraging this approach, R. Ramakrishnan and B. Chen [28] have
put forward a cube-space mining method, taking advantage of
the data-cube structure to define and select cuboids of interest to
mine over. This way, data mining can be used as a building block
within the OLAP analysis to exploit multi-scale knowledge discov-
ery in a defined dimensional frame. Characteristics of the cube-
space data mining scheme involve the following three steps: (1)
relying on cube space to determine the space of candidates for
mining, (2) employing OLAP queries to explore features and targets
for mining and (3) adopting data-mining models as building blocks
within a multi-step mining process. This exploratory multidimen-
sional DM approach, also known as OnLine Analytical Mining
(OLAM) [22], allows the user to effectively select and analyze a rel-
evant subset of data at different granularities and present discov-
ered knowledge at different abstraction levels.

1.3. Motivation

This being said, OLAM has, to the best of the authors knowledge,
little to none been practiced in the built environment sector, and
while DM extensively demonstrated strength and performance in
this domain, barriers still persist avoiding professionals from
exploiting the full potential of DM analytics. Previous studies usu-
ally relied on predefined problems using only a small subset of
building data with few established benchmarks to compare results
from one investigation to the next [29]. Additionally, developed
research methods commonly follow disparate steps, increasing
complexity with unsystematic mining analytical procedures. With
the variety and complexity of the most recently developed DM
techniques as well as the highly dimensional building data, it has
become increasingly challenging for building professionals to (i)
effectively target which data dimensions to explore and consider
in their analytics, (ii) determine what analytical steps to follow
for targeted building data mining and (iii) select the most suitable
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DM technique for a particular case study from established refer-
ences. Realizing the prevalent demand for a common DM frame-
work, noticeable studies have proposed methods applied to BAS
data [7,30,31]. However, developed frameworks were usually tai-
lored to DM application-specific cases and failed to address
multi-dimensional analytical approaches from orderly steps
required for systematic and benchmarked building data analytics.
Detailed stepwise generic approaches with established good prac-
tices for preprocessing, application-specific and benchmarking
procedures are frequently overlooked yet desperately needed. In
order to adopt systematic analytical steps from a common frame-
work within the building analysts and research community, sev-
eral steps still need to be undertook; (i) establishing and
following a common DM framework and (ii) developing and
employing open building data toy sets to serve both as benchmarks
to case-specific studies while allowing (iii) the development of
replicable implementations of typical building energy manage-
ment applications for valuable knowledge transfer. Ensuing these
steps would cultivate more generalizable findings and insights
while vastly contributing to the practical adoption of a common
analytical frame.

This study proposes a response to this appeal and puts forward
a multi-dimensional analytical method grounded on a generic data
mining framework for building data analysis. It puts together
reviewed analytics best practices in a step-wise method tailored
to DM application for systematic knowledge discovery in big build-
ing data. Contributions of this work can be summarized as three-
fold;

(i) Putting forward a generic building-tailored DM framework
for unified and systematic analytics,

(ii) Framing a multi-dimensional analytical approach to big
building data, cutting down the complexity endowed from
high-dimensionality, and

(iii) Providing an open access implementation of the presented
method relying on a large and open building data set, serv-
ing as benchmarks to similar studies and appealing to more
reproducible, comparable & empirically validated analytics.

The rest of our paper is divided into two main sections covering
the presentation of our proposed multidimensional generic DM
framework and an illustrative implementation of the method with
an automated pattern identification application. Our method is
divided in five main phases, namely building data preprocessing,
where we define the building data cube, an exploratory analysis
to frame our multi-dimensional analytics, followed by pre-
mining, mining, confirmatory analysis and post-mining. We apply
the method to a typical descriptive knowledge discovery case on
an open building data set, assuring overall reproducibility of the
exposed findings.
1 Ideally, if data storage space permits it, both raw and preprocessed versions of the
data should be stored, to allow preprocessing reproducibility evaluation as well as
alternative variants that could be considered in other studies.
2. Method

Resulting from an in-depth analysis of DM methods and com-
prehensive review of domain application driven techniques we
propose a generic DM framework tailored to multidimensional
building data. The developed method is founded on established
methodology from the literature. Notable existing frameworks typ-
ically involve four major phases, i.e. data preprocessing, data parti-
tioning, knowledge discovery (data mining) and post-mining. In
particular, the generic framework developed by Fan, Xiao and
Yan [10] designed for BAS data knowledge discovery englobed
building performance assessment, diagnosis and optimization as
possible applications. Our method follows similar steps yet
extends it from a multidimensional view point leveraging both
3

descriptive and predictive mining techniques while importantly
stressing prerequisites for reproducible and generalizable results
from benchmarks. It puts forward a generic feed-forward and back
process to follow while attempting any building mining process
and differentiates mining application-dependent steps from gen-
eric DM ones from a unified and interpretable method. Our method
is illustrated in Fig. 1 where two tasks are performed in the data
preprocessing phase, including data integration and data cleaning.
Multidimensional data exploration then follows, incorporating
benchmark reports and cube lattice selection with OLAP explo-
ration. After, a pre-mining phase incorporates data transformation
and mining-specific steps. Next, the mining stage takes place and
an important confirmatory analysis phase is there after carried
out with validation methods leading to algorithm selection. A feed-
back loop linking confirmatory analysis to the mining and pre-
mining blocks is included in the framework to indicate potential
iterative sequence allowing pre-mining steps and mining to be
repeated to converge to the desired results for algorithm optimal
selection. And the OLAM feedback loop illustrates the repeated
mining process over different cube lattices for multidimensional
mining. Knowledge interpretation and extraction is then pro-
ceeded within the post-mining phase, supported by visualization
tools. Finally, discovered knowledge can be used for a defined
application, or serve as a preliminary step to another mining phase,
as illustrated with the last feedback arrow. This is often the case
when mining for association rules or undertaking predictive learn-
ing with prior profile clustering for example [31,32]. Details of the
evoked phases are developed in the following subsections.

2.1. Preprocessing

Data preprocessing completes two main tasks, i.e. data integra-
tion and data cleaning (outlier identification, missing value han-
dling). Data integration refers to the selection of a suitable
structure format and data model for the later analysis. Cleaning
aims at enhancing data quality to obtain suitable results out of
the intended analytics. It has been reported in DM literature that
data cleaning should be performed prior to data integration, allow-
ing information industry to benefit from clean ‘usable’ data stored
in data warehouses [22]. This work considers the analytical process
from a scientific point of view, where data may be cleaned in dif-
ferent ways consequently impacting the later analysis, which is
why we recommend the data be stored raw rather than
preprocessed1.

2.1.1. Data integration
Data integration is composed of a first data model definition

phase, from which the later integration process can be undertaken.
Data model definition constitutes a fundamental first step to struc-
ture the multidimensional BAS data under a given schema. Data
integration techniques can later be applied consequently providing
consistency in naming conventions, encoding structures and attri-
bute measures [22].

2.1.1.1. Data cube map. Establishing the building data mapping
serves as an imperative step to the framing and structuring of its
various dimensions. Additionally, obtaining clear delineated
dimensions allows leveraging the design of a data cube into
decomposed lattices that will serve in shaping the later OLAM ana-
lytics. A common approach to the data cube model definition orig-
inates from the formulation of the analysts’ interrogations.
Specifying questions such as ‘‘what is the energy consumption
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relationship to time?”, framing the analysis under the energy and
time dimension, or ‘‘what was the total energy consumption of a
building in a certain location during a specific time interval?”, here
querying along three dimensions, serves in the conceptualization
of the state space to explore and, thus, in the definition of the data
cube dimensions.

Building data gathers six types of recorded data, from building
operations to metadata combined [33], echoing quite conveniently
the 6 facets of a cube; i.e., time, location, building data encapsulat-
ing operational and meta-data, climate conditions, occupant
related information and equipment data. Time data serve as a ref-
erence index to the other measured attributes, and indicates Year,
Month, Day, Hour, Minute, Second, Day Type, generally formatted
under the ISO 8601 [34] recognized complete format ‘‘YYYY-MM-
DDTHH:MM:SSZ”, e.g., 2019-07-16 T19:20:30+01:00. Location
straight forwardly regroups spatial delineations such as geographic
coordinates or address, which can be divided into numerous gran-
ularities, i.e., device, room, zone, system, building, street, district,
city, state and country. Building data regroups building character-
istics and operational data. Operations cover energy demands orig-
inating from building comfort maintenance with heating and
cooling loads, lighting and ventilation systems through electric
power loads, heat flows or natural gas consumption, but can also
cover also water supply. Metadata evokes the building’s physical
4

characteristics commonly encasing floor area, number of floors,
global insulation coefficient, window-to-wall ratio, date of con-
struction and building type (school, dwelling, office building, hos-
pital, education. . .). Climate conditions assembles indoor or
external environmental conditions with attributes such as dry-
bulb temperature, relative humidity, irradiance, wind-speed, pre-
cipitations, pressure and air quality but also non-temporal charac-
teristics such as the Koppen climate classification [31]. Occupant
information can deal with both occupant characteristics and com-
fort data. Occupant characteristics are seldom collected as a result
of their privacy sensitive nature as well as tediousness to gather
through costly surveys. They cover attributes of age, gender, educa-
tion, lifestyle, annual income and other socio-economic parameters
[35,36]. Occupant comfort data relate to physiological, psycholog-
ical and environmental factors influencing human comfort percep-
tion, i.e. thermal, visual and aural comfort [37]. Equipment data
possess a non-temporal and operational entity, namely equipment
characteristics, i.e. equipment type, efficiency, capacity, and opera-
tional system settings, i.e. set-point temperature, inlet and outlet
equipment temperatures or pressures, control parameters and
events accompanied with eventual respective causes (human or
agent initiators) [38].

Given these dimensions, one can group study-specific available
data to form a dimensional mapping of the cube. Given an n-
dimensional cube, each dimensional-element di, with i 2 ½1;n�,
can thus be associated into groups of increasing size, i.e. cuboids.
Cuboids of a given size compose a lattice, where each lattice
l 2 ½0;n� will thus be composed of Pn;l possible partition cuboids
from the below equation.

Pn;l ¼
n

l

� �
¼ n!

l! n� lð Þ!
Fig. 2 illustrates a 4D cube mapping example given the building

cube dimensions: time (T), resource consumption (R), External
conditions (E) and location (L). The cube can then be reduced by
eliminating non-relevant dimensional associations from analyst
inspection. Here the 2D cuboid association {T, L} can be eliminated
as location is, by essence, non-temporal. Consequently, all emerg-
ing cuboids can also be eliminated from the cube space, resulting
in a reduced state space mapping.

Establishing the cube data mapping provides a conceptual and
structured model, dividing data into clear separate dimensions,
on which the later analytical processing can be founded on. It
may also be noted that the hierarchical structure inherent to some
dimensions, e.g., time or location, possess abstraction levels called
footprints which represent granularities accessible for later OLAP
exploration of the cube space [22].
2.1.1.2. Data cube integration. Integrating the data cube to a suit-
able format for mining processing then follows. Building data are
typically recorded in two dimensional tables where a set of attri-
butes (columns) representing a variable are stored across different
instances (rows). Within the defined dimensions stated earlier, dif-
ferent levels of measurements are often required for in depth
building energy performance analytics, i.e. from building site scale
to room, equipment or component-point measurements, increas-
ing data dimensionality and complexity. For instance, HVAC sys-
tems often require multiple outlet temperature, pressure and air-
flow point measurements, with one aggregated component energy
consumption. Differentiating these relationships in an ergonomic
and analytically efficient way becomes crucial for effective DM. A
prevalent adopted solution proposes common markup language
and data structure to organize the collected information: Project
Haystack [39]. Data are organized hierarchically from three enti-
ties, i.e. site, a single building with a unique street address, Equip,
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physical or logical pieces of equipment within a site, and Point,
referring to sensors, actuators or set point values of an equipment.
Following this reference, a multi-column format is proposed where
sets of attributes are grouped hierarchically under common sites,
consequently structuring attributes from similar buildings under
a common table.

2.1.2. Data cleaning
Data cleaning is a crucial step to efficient DM analytics aiming

to improve data quality by dealing with duplicates, clearing out-
liers and filling missing values from raw BAS data. It is unfortu-
nately still common to find little to no information on the data
cleaning phase of many studies [31,40,41]. This first major phase
of DM legitimately effects the outcome of the later analysis and
should always be clearly reported to assure proper result bench-
marking. To the best of the author’s knowledge, every existing
BAS analytics from the literature perform missing values filling
prior to outlier detection, as a consequence of the few existing
methods robust to missing values. This work introduces a shift in
this established order to avoid using tampered sets for missing
value filling which can result in a greater share of produced out-
liers, consequently making them harder to identify in the later
step.

2.1.2.1. Duplicate data handling. Duplicates in data sets consist of
data objects that are corresponding or identical to one another to
some extent. In BAS data, these can consist of redundant attributes
within a data set, or multiple attributes stored in a common
instance (timestamp), sometimes with different values, also
referred to as inconsistencies. Their sources cover use of denormal-
ized tables, inaccurate data entry or updating some but not all data
occurrences [22]. They can create major issues when merging data
from heterogeneous sources and should be handled first within the
cleaning phase. Duplicates handling is seldom depicted in BAS lit-
erature and usually consists of candid duplicate attribute, or
instance, lookup functions coupled to targeted removals if the
duplicates are identical. Handling inconsistencies however yields
different alternatives, i.e., keep only one duplicate over the others,
average the inconsistencies out or remove them from the data.
Knowledge on the origin of a set of duplicates can help identify
erroneous data and chose an appropriate strategy for duplicate
handling.

2.1.2.2. Outlier detection. An outlier can be defined as data point
that is significantly dissimilar to other data points or that does
not imitate the expected behavior of others [42,43]. In BAS data,
outliers can come from measurement faults (sensor), transmission
5

or transcription anomalies due system changes or human errors.
Natural outliers reveal unusual but occasional behaviors of the
monitored phenomenon. Outliers can be grouped in two main
groups, i.e., point and subsequences outliers [44]. This phase of
DM should only consider point outliers identification as recom-
mended by the work of Fan et al. [45], not to later overlap with
mining typical/atypical patterns [46]. Outlier detection methods
include prediction models, profile similarity approaches and devi-
ants identification [44]. Prediction models spot-out outliers by
comparing measured values from predicted ones with an outlier
score threshold based comparison. The primary variation across
models concerns the particular prediction model considered (su-
pervised, unsupervised). The profile similarity approach is based
on a reference normal profile built upon historical data to which
new time points are compared to. Outliers are then identified from
time dependent normal profiles and variance vector comparison
with anomaly score. The deviant based method estimates outliers
from a minimum description length (MDL) standpoint originating
from information theory. If the removal of a point in a time
sequence results in a significantly simpler sequence to describe,
then it is considered an outlier.

2.1.2.3. Missing value filling. Missing data in BAS are commonplace,
with multiple processes being monitored from seconds to hourly
frequencies on a yearly basis, gaps are typical within raw BAS data.
Missing data originate from error or omissions when data is
recorded or transferred [47], imperfect procedures of manual data
entry, incorrect measurements, and equipment error [48]. Discon-
tinuities may lead to serious obstacles when analyzing findings
[49], e.g., loss of efficiency, complications in data handling and
analysis, bias estimates from dissimilar lengths of data and reduc-
tion of statistical power (inefficient estimates) [50]. Selecting an
appropriate method for missing data handling depends on the time
series pattern and the missing data mechanism [51]. Challenges
related to these techniques involve, maximizing available data
use to preserve covariance structure in multivariate data [52],
and incorporating variance estimates of the uncertainty rooted
on imputed data [53]. If the gaps represent more than 60 percent
of the set however, then no method is judged suitable to cure
the set [48]. Missing value filling methods cover either determinis-
tic approaches, known as single imputation, or stochastic ones, also
referred to as multiple imputations, where several values are gen-
erated for each missing observation to reflect the uncertainty of the
missing data [49]. This work proposes a single imputation
approach dependent on the length of the missing sections. Explicit
modeling with regression can be chosen for missing data sections
smaller than 3 consecutive hours, i.e., moving average [45], while
longer sections call for implicit modeling using the hot deck
method, i.e., where missing values are averaged from identical
time intervals and day of the week using sections of 2 weeks. Inter-
ested readers are invited to refer to the work of M. Norazian Ramli
et. al. [54] for in depth review of imputation methods.

2.1.3. Multidimensional exploratory analysis
This section intends on framing multidimensional data explo-

ration leveraging the BAS data cube representation. It holds the
essential role of identifying data structures, distributions and
trends, needed for benchmarking purposes and defining appropri-
ate mining approaches for the investigated set. Additionally, it sup-
ports more generalizable, interpretable and framed analytics by (i)
cutting down the complexity of big data from cube lattice selection
with OLAP exploration and (ii) putting forward important bench-
mark reporting characteristics. Exploratory Data Analysis (EDA)
was originally defined by John W. Turkey as the act of ‘‘looking
at data to see what is seems to say” [55,56]. It aims at collecting
insights into data characteristics to help with the following analy-
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sis by answering questions such as; what does the data look like?
How can one visualize the data to get a better sense of it all? How
are the values distributed and can similarities between attributes
be measured [22]? Existing explored characteristics comprise attri-
bute types, i.e., nominal, binary, ordinal, numeric, discrete or con-
tinuous, and statistical descriptions, i.e., central tendency,
dispersion, variance and correlations. Attribute type exploration
is carried out during the first data integration phase, however sta-
tistical feature inspection can be performed a priori or posteriori, to
data cleaning. EDA is here presented a posteriori to data prepro-
cessing in the DM framework as a necessary step to encase multi-
dimensional mining. First benchmark reporting presents the
dimension-specific data structures, providing necessary insights
to the later pre-mining phase to which follows, lattice/cuboid
selection and OLAP exploration.

2.1.3.1. Benchmark reporting. EDA serves as a necessary data struc-
ture reporting appliance to any scientific study. As the work of B.
Yildiz et. al. demonstrates, BAS data characteristics should system-
atically be described to allow validation of a study’s true success
thanks to a defined analytical framework [57]. Yet, too many stud-
ies fail to report these features. Description of household charac-
teristics such as dwelling types, age and physical condition,
household loads statistical components and climatic conditions
using established classifications, e.g. Koppen Climate Classification
[58], should henceforth systematically be reported [57]. While
undertaking EDA, it becomes necessary to define what the authors
propose to call the analytical window frame which encompasses
three elements, i.e., data granularity, horizon and frame. Granular-
ity refers to the sampling rate of the data set over the selected
dimensions. The horizon entails the largest dimensional attribute
considered and the frame defines the dimensional region of inter-
est within the analysis. For example, typical building energy pat-
tern analytics tend to use temporal analytical windows with 15-
min to hourly granularity, yearly horizon and daily frame [59].

Statistical features examination is often performed through
data visualization. It communicates data structures and tendencies
clearly and effectively from graphical representation endowing
users with a straightforward understanding of the data [22]. A ser-
ies of three data visualization techniques are hereby presented
capturing the data dimensions’ inter- and/or intra-attribute
structures.

(i) Combined half-violin and boxplots allow appreciation of cen-
tral tendency, distribution and variance with an assessment
of statistical inference at a glance via overlaid boxplots [60],
while avoiding the redundant mirrored probability density
functions of violin plots.

(ii) Scatterplot matrix coupled to correlation matrix display the
marginal dependence structure of the data [61], granting
examination of intra-attribute correlations and attribute dis-
tributions from bivariate relationships. These plots are
favored as particularly effective for feature engineering and
visualization [62].

(iii) Weekly framed heat maps are suggested as a substitute to
run charts, enabling inspection of per attribute patterns
leveraging a weekly to daily analytical frame of interest
using hourly resolution and yearly horizon.
2.1.3.2. Lattice exploration. Lattice exploration embodies the start-
ing step of the iterative cube-space mining, i.e., OLAM loop [28].
A cuboid is firstly chosen from the established data cube dimen-
sions for OLAP exploration of the multidimensional data. For
instance, given a 3-D building data cube covering time, site and at-
tributes dimensions, see Fig. 3, three sets of 2-D cuboids can be iter-
6

atively selected and explored, i.e. {time, site}, {time, attribute} and
{site, attribute}. Typically, analytical frames explored in building
performance mining encompass only one of the three presented
cuboids, i.e., top-down, bottom-up and the less common temporal
drill-in approach, respectively corresponding to cuboids A {time,
site}, B {time, attribute} and C {site, attribute}. By examining varying
levels of abstractions through lattice exploration, information and
insights sharing between them can be exploited; a concept also
employed in transfer learning [63]. C. Fan et. al. [64] recently
demonstrated its value across buildings for short-term building
energy predictions, particularly when measured data are limited.
Multidimensional mining can exploit these varying levels of data
abstractions from drilling, pivoting, filtering, dicing and slicing of
the data cube. Leveraging data visualization to these ends notably
expands the power and flexibility of data mining [22].

2.2. Pre-mining

Pre-mining is by nomenclature the phase completed prior to
mining. Customarily, this process is treated within pre-
processing as it shares the objective of preparing the data for min-
ing [7,22,30,33,45,65]. This study suggests differentiating
application-independent steps from the dependent ones and intro-
duces pre-mining in the DM framework as a mining-specific pre-
processing phase which can be iterated over in response to
confirmatory analysis results. Pre-mining englobes two principal
functions, i.e. data selection, for targeted and computationally effi-
cient mining, and data transformation, to prepare the data to a
suitable type and range for mining.

2.2.1. Data selection
Data selection, also referred to as data reduction, answers to a

necessary step in big-data mining originating from the sheer vol-
ume and high dimensionality of the data. Indeed, addition of data
volumes from keeping irrelevant attributes or loss of decisive
information from withdrawing relevant ones will likely be detri-
mental to the mining process; it may slow the mining algorithm
employed, while leading to discovered patterns of poor quality
[22] and has been recognized to play an equally important role
as ML model development throughout the pipeline of DM [62].
To that end, data selection encompasses measures that are attri-
bute selection, sampling, and dimensionality reduction techniques.

Attribute selection proposes to straightforwardly reduce the
data set dimension by removing irrelevant or redundant attributes
(or features). Note that this process can also involve the creation of
new attributes, from combined information of removed ones. Its
aims at finding a minimum set of attributes while keeping the orig-
inal probability distribution of the classes as unaffected as possible
[22]. Feature selection is commonly conducted by sequential back-
ward selection (SBS), where attributes are sequentially removed
till the reduced space contains the desired number of features
[62]. Existing techniques commonly evaluate and rank individual
or subsets of data attributes, e.g., information gain attribute rank-
ing, relief, principal component, and correlation-based feature
selection [66].

Data sampling involves using statistical techniques to select,
manipulate and analyze a representative (sub) set of data, usually
resulting from the need to reduce the size (dimension) of the enor-
mous data set considered, i.e. under-sampling. Over-sampling on
the other hand is less frequent within the big data era, as a result
of the overabundance of already collected data. Yet, over-
sampling can be used to test the robustness of mining results
and highlight sensitivity of the approach to sampled realizations.

Dimensionality reduction techniques, or data reconstruction
methods [7], serve as a means to reach reduced representations
of the data while minimizing information loss [22]. Main tech-
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niques include wavelet transform, which provides high and low
frequency decompositions of signals based on wavelet approxima-
tion coefficients [67], and principal component analysis, where
low-dimensional attributes are created from orthogonal linear
transformations of the original high-dimensional ones.
2.2.2. Data transformation
Data transformation addresses data conversion to suitable

types, ranges and noisiness to serve as DM algorithms input.
Indeed, depending on the mining technique considered different
data formats are required, e.g. categorical or numerical, while
BAS data can exhibit varying units, scales and data type [45]. To
this end, this phase covers data normalization, aggregation,
smoothing and discretization.

Normalizing a time series consists in scaling its attributes
within, or around a smaller range or value, typically [-1, 1] or
[0,1]. This step is commonly performed to allow scaled compar-
isons between dissimilar ranges of attributes, e.g. normalizing fea-
tures allows balanced contributions in the update of model
weights during the training phase of predictive learning. Typical
normalization methods cover min–max, z-score and decimal point
normalizations [22].

Aggregation similar data groups together, also known as bin-
ning or bucketing, consists in applying summary operations to
the data. For instance, sample-rate conversions resample the data
by aggregating values together at regular instances, i.e., down-
sampling, where daily intervals are reduced to weekly or monthly
ones. The reverse operation, interpolates data across larger resolu-
tions, e.g. up-sampling to convert hourly instances to 15 min inter-
val ones.

Smoothing serves to remove noise from data which is fre-
quently used to uncover trends in noisy time series and can allevi-
ate overfitting pitfalls of regression models. Usual techniques
include binning, with either equal width or frequency, regression
or clustering [22]. It can be interestingly noted that the previously
presented down-sampling rate conversion method, can also
achieve smoothing effects as a data binning technique.

Discretization involves data type transformations such as con-
verting numeric features to interval or conceptual labels [22],
e.g., 30–50, 50–70 or adult, senior, respectively. This step is consis-
tently required for mining algorithms such as Association Rule
Mining (ARM), i.e., the frequent-pattern growth and Apriori algo-
rithms that can only handle categorical data [7].

It should be noted that feature construction relates more to data
transformation, as the work of J. Han et al. reports [22]. Yet,
because this framework treats the ordering in which these steps
should be taken, it was chosen to include it within feature selec-
7

tion, to apply data transformation techniques a posteriori to fea-
ture engineering.

2.3. Mining

Mining, or knowledge discovery, encapsulates the algorithmic
mining of the data which entails a large number of varying tech-
niques. Selecting the appropriate one for a given application is part
of the difficulties most data practitioners are faced with and is, nat-
urally, function of the nature of the problem and the given data set,
or case study. Going towards more interpretable DM analytics, we
propose to group these techniques in two application-oriented
groups, i.e., descriptive and predictive techniques. These groups
echo the, well established machine-learning families that consti-
tute unsupervised and supervised learning respectively, while
clearly distinguishing the typical end goals one can expect from
such methods. It is beyond the scope of this study to give a com-
plete review of all existing DMmethods, however principal mining
groups will here be revised.

2.3.1. Descriptive techniques
By definition, descriptive techniques are diagnostic application-

oriented analytics and intend on achieving a better understanding
of the causes of a given process, i.e., identifying patterns or abnor-
mal behaviors. Descriptive DM techniques, as opposed to predic-
tive ones, have been judged more capable at discovering
previously unknown knowledge from BAS data [7]. Descriptive
techniques cover the important DM groups of clustering, and Asso-
ciation Rule Mining (ARM). Clustering is the process of grouping a
set of data objects (or observations) into subsets or clusters. Each
object within a cluster is similar to one another, yet dissimilar to
objects in other clusters. Similarities and dissimilarities are
assessed based on attribute values describing the objects and often
involve distance measures, or metrics [22]. Clustering algorithms
have been broadly applied to identify typical building operation
patterns, e.g., building energy demand patterns, indoor environ-
ment distribution and building energy system operation patterns.
Main clustering algorithms involve k-means clustering with many
variants including adaptive k-means and k-shape clustering, Fuzzy
C-Means (FMC), support vector clustering, hierarchical clustering
or decision tree-based clustering and Self-Organizing Maps
(SOM) [59]. ARM is a powerful tool designed to extract association
rules amongst attributes from large amounts of operation data.
Association rules are commonly an implication of the form
‘‘A ? B”, where A is defined as the antecedent and B the conse-
quent. In general, ARM can be viewed as a two-step process where
all frequent item sets are firstly identified, from which strong asso-
ciation rules from the frequent item sets satisfying minim support
and confidence can then be generated [22]. Variations of ARM
recently applied in BAS data include Temporal Association Rule
Mining (TARM), or sequential rule mining, to encapsulate the tem-
poral dimension within the discovered rule. Common ARM algo-
rithms encompass TRuleGrowth, Weighted ARM, QuantMiner,
Apriori, ParaMiner and CloseGraph. Some notable TARM algo-
rithms include TRuleGrowth, SPADE and CMRules [45].

2.3.2. Predictive techniques
Predictive mining intends on determining the likelihood of

future events from historical data. It constructs a model, or func-
tion from the analysis of sufficient numbers of training sets, i.e.,
data objects for which the desired output is known. Predictive
DM is often employed to capture complex and nonlinear relation-
ships between inputs (independent) and outputs (dependent vari-
able) of an observable phenomenon [45]. It is then employed to
predict the discrete or continuous value of observations yet unfore-
seen. Familiar DM predictive techniques comprise regression and
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classification based methods. Regression analysis is a statistical
methodology most often applied for numeric prediction of missing
or unavailable data values. It also covers the identification of distri-
bution trends from available data [22]. Methods include Artificial
Neural Networks (ANN), deep neural networks, Support Vector
Machines (SVM), Decision-Trees (DT), Genetic Algorithms (GA)
and ensemble learning [68]. On the other hand, classification pre-
dicts categorical labels (unordered, discrete). Classification forms
an analysis that identifies a model describing the data into distin-
guishable classes or concepts. The models are built on targeted
attributes fitted to the value of predictor attributes. Data classifica-
tion aims to classify data into distinct predefined classes, providing
the description categorization and generalization of a given data-
base [31]. It includes algorithms such as Artificial Neural Networks
(ANN), Support Vector Machines (SVM), K-Nearest Neighbor
(KNN), Decision-Trees (DT), Bayesian Network (BN) and ensemble
models, i.e., random forest [69].

2.4. Confirmatory analysis

Confirmatory analysis provides answers to the questions of
model accuracy estimation; ‘‘what are appropriate measures of a
model’s goodness?” and, if there are multiple models to choose
from, ‘‘how to selection the best model?” from them. These
enquires relate to method validation, and model selection respec-
tively. This phase embottles the two earlier pre-mining and mining
phases and constitutes the keystone of this iterative process. It
defines the method around which the mining will be performed,
and consequently arises as a founding phase of the analytical
approach. Confirmatory analysis in DM echoes the statistical pro-
cess of evidence evaluation from significance, inference and confi-
dence tests; it is the phase where findings and arguments are put
to trial. This phase is usually implicitly included to the earlier min-
ing step and explicitly framing such a key step of the mining pro-
cess is becoming imperative to approach more interpretable
mining analytics. The confirmatory analysis step ergo includes val-
idation method and model selection.

2.4.1. Validation method
Determining what decides the goodness of a mining’s process

and how to assess it is by all means what the validation method
deals with. The what serves to quantify the evaluated characteris-
tics, commonly employing performance metrics. These characteris-
tics can cover speed, robustness, scalability, interpretability and
mining-dependent validity indicators, e.g., purity, similarity index,
or accuracy [22]. The how works towards obtaining representative
evaluated characteristics and assures reliable results are obtained.
Common methods employed for model assessment contain cross
validation, bootstrap, sensitivity analysis and hyper-parameter
tuning. Defining how a mining model is validated and under what
criteria is the fundamental foundation of any mining process.

2.4.2. Algorithm selection
With evaluation characteristics, metrics and validation method

defined and undertook, model and associated parameters are
selected from multi- or single-criteria assessments. Most DM work
evaluate model quality from one criterion at a time such as accu-
racy or interestingness with a single-criterion assessment [70].
Some works have proposed multi-criteria evaluation methods to
combine multiple measures in their model selection. The review
of Aruldoss et al. cover a few of them, namely fuzzy and non-
fuzzy analytics hierarchy process, TOPSIS, grey theory, data envel-
opment analysis, weigthed sum models [71]. Panapakidis and
Christoforidis have notably developed a multi-criteria decision
method for optimal selection of clustering algorithms applied to
load profiling applications [72].
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2.5. Post-Mining

Post-Mining intends on bridging practical applications with
mined discovered knowledge. This step requires domain expertise
for knowledge selection and interpretation which can become par-
ticularly time consuming [7,23]. Knowledge selection can refer to
varying application-dependent processes, e.g., characterizing iden-
tified load profiles from clusters [73,74], or selecting relevant rules
for interpretation amongst massive ARM outputs [45]. Typical end-
use applications of building data mining englobe building energy
load prediction, predictive maintenance, fault detection and diag-
nosis, building performance analysis and energy management
optimization.
3. Implementation

We implement the given method on an established automated
pattern filtering application for building performance analysis pro-
posed by Miller et. al, namely DayFilter [23]. Using time series Sym-
bolic Aggregate approXimation (SAX) daily profiles are first
segmented into W equal sized segments, piece-wise approximated
across each of these segments and finally transformed to alpha-
betic characters according to a chosen alphabet size A, creating
breakpoints of equiprobable regions from Gaussian distribution.
For example, fixing W = 4 and A = 3 could produce the sequence
‘abca’ where each alphabet character would correspond respec-
tively to a ‘low-medium–high-low’ segment values. SAX transforma-
tion results in reduced representations of daily profiles allowing
computationally efficient differentiation of daily motifs from dis-
cords. The method steps are visually presented under Fig. 4, where
the arrows in the diagram designate the sequence execution flow
from steps 1 to 6. The iterative cube space OLAM process is
repeated within steps 3 to 6, where each cuboid selection orients
the analysis to either prevalent top-down, bottom-up or temporal
drill-in approaches. The complete code implementation of the
reported study can be found under the open github repository
https://github.com/JulienLeprince/multidimensional-building-data-
cube-pattern-identification, for more interpretable as well as trans-
parent knowledge transfer.

We use the open data set from the Building Data Genome pro-
ject 2 (BDG2) [75]. This open set was chosen to allow reproducibil-
ity of the given analytics while illustrating how large open source
reference sets can be beneficial for DM analytics benchmarking.
The BDG2 includes 3053 energy meters from 1636 non-
residential buildings located in Europe and, principally, North
America. The set covers two full years (2016–2017) at an hourly
resolution with multi-meter building measurements as well as
weather and building meta-data.

We consider a simple 3D data cube regrouping dimensions of
{time, site, attribute}, recall Fig. 3, to illustrate the given pattern
identification. The {attribute} dimension encapsulates weather
and building meter-data combined to allow a simplified space cube
mapping where its 2D lattice echoes typical study frames of inter-
and intra-building analytics. The inter-building analytical frame,
i.e. A={time, site} cuboid, is typically relevant for building stock
diagnosis or benchmarking given a fix attribute, while the intra-
building frame, i.e. B={time, attribute} cuboid, serves for within-
site diagnosis for the selected building across time. The rather
unfamiliar C cuboid regrouping {site, attribute} dimensions, allows
diurnal drill-in exploration of cross-building/attributes combined
information from a certain time slice of interest. To grasp the com-
plexity endowed with high dimensionality while keeping the use
case relatively simple, we select temporal attributes of electricity,
gas, hot water and chilled water of site meter energy consumptions

https://github.com/JulienLeprince/multidimensional-building-data-cube-pattern-identification
https://github.com/JulienLeprince/multidimensional-building-data-cube-pattern-identification


Fig. 4. Diagram of three-dimensional cube space SAX pattern mining steps.
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and pair them with external condition attributes of air tempera-
ture and sea level pressure.

Meter data contained approximately 4.74%, 6.20% and 6.94% of
missing values for electricity, hot and chilled water respectively
with maximum lasting periods ranging between 0.25 and 1.5 days,
lower and upper quantiles for electricity respectively. First the
Hampel filter, an outlier robust rolling window method, was
applied to detect point-wise outliers with a window size of 6
time-steps (hours) and a standard-deviation threshold of 3 [76].
A moving average was then used to fill in missing data points for
consecutive gaps smaller than 4 h. Greater gaps were averaged
from identical time intervals and days of the week using sections
of 2 weeks. The dimension dependent EDA of the building stock
meta-, weather, and meter-data can be found under the publica-
tion’s GitHub repository [75] and will thus not be repeated here.
The 2D lattice is then selected for cube-space exploration as it
encompasses typical study frames while paving the way to the
dimensionally more complex 3D base cuboid.

The following mining steps treat the OLAM iterative process of
data selection, transformation, clustering, validation and knowl-
edge interpretation, over the selected 2D lattice of the cube. The
time series are first normalized through a z-scale transform to
obtain an approximate mean of 0 with standard deviations
approaching 1 [77]. Echoing the work of Miller et al. [23] we do
not normalize the series based on individual sub-sequences and
rather take the full temporal scope of the time series into consider-
ation. This allows us to discover patterns leveraging both the mag-
nitude and shape of the original profiles revealing the seasonality
within the series. SAX transformation then serves as a blended data
dimensionality reduction, aggregation and smoothing technic. It is
performed over the time series considering segments W = 4 and
alphabet size A = 3. This selection of SAX parameters is driven by
the desired signal granularity and coarseness of the reduced time
series approximation. More detailed patterns could be generated
with increasing segment and alphabet size, however ensuing the
findings of Miller et al. these parameters have been found to pro-
vide the best balance between the number of patterns generated
and detailed resolution required to filter discords in a diurnal
frame context. Heuristically, we set an absolute count threshold
at 10 to filter motifs from discords, to which succeeds Euclidean
distance-based K-means clustering, further reducing the pattern
groups. We validate the optimal number of clusters through an
elbow method assessment using two similarity indexes, i.e.
within-cluster sum of squares (WCSS) and silhouette score. Finally,
9

we present results using expressive visualization tools, allowing
human result inspection for efficient and interpretable knowledge
extraction. Diurnal heatmaps were retained as a particularly
impacting visualization plot allowing 3 dimensional inspections
within a 2D domain.

The below sub-sections present the cuboid-specific analytical
particularities & diagnostic focus of the evoked pre-mining, min-
ing, confirmatory analysis and post-mining steps, i.e., building
benchmarking, in-site view and temporal drill-in analysis, with a
closing multi-cube-space visualization interpretation step.

3.1. Building benchmarking

A high level top-down building stock diagnosis is first under-
taken to gather insights from building energy consumption profile
ranges and orient the subsequent lattice exploration. The {time,
site} dimensions are sliced from the building data cube, and the site
electric meter consumption attribute is chosen as both a conven-
tional and representative energy resource consumption metric.
Time series normalization is performed per site and across time,
capturing each buildings’ energy consumption profile shape and
seasonal range. SAX sequences are obtained from the z-scaled time
series and discords are filtered out from the settled count thresh-
old. Fig. 5 presents the motif counts obtained across the stock, from
which the most frequently observed motif count is aaaa, a constant
low to null consumption steady-state sequence accounting for
12.58% of overall building stock SAX sequence counts. To group
buildings into similarly operating clusters we leverage the dimen-
sionality reduction brought by the SAX transformation and allevi-
ate the computational burden that would follow undertaking
clustering on the original daily profiles. We consequently perform
clustering on the motif sequence cumulated counts across the
building pool. This allows to group buildings together based on
their motifs distribution across the entire time horizon considered,
while being very computationally light. A limitation of considering
solely motif counts in the clustering process is however that the
similarity between sequences is not accounted for, e.g., aaba will
be considered as different from ccbc as aaaa, although it is natu-
rally much closer to the later. While the authors are conscious of
this limitation, it is beyond the scope of this article to develop a
clustering method accounting for SAX sequences similarities. From
the confirmatory analysis results presented in Fig. 6, we fix the
optimal number of clusters as 6; a value showing a peak in silhou-
ette score, indicating a slightly higher cluster cohesions, while dis-



Fig. 5. Heatmap of electric meter consumption SAX counts accross building stock. An interactive visualization version of this figure is available via the public github
repository of this study.

Fig. 6. Cluster similarity index assessement of cross-building stock from electric-
meter SAX motif counts.

Fig. 7. Building stock electric-meter SAX motifs distribution across clusters. Bar
plots represent the sequence count median value while the error bars indicate the
lower and upper quantiles.
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playing a sufficiently lowered WCSS and acceptably large number
of clusters. The clustering results present the distribution of motifs
across the obtained clusters under Fig. 7. Cluster 2 stands out as
being composed solely of flat daily profiles from either aaaa, bbbb
or cccc sequences. These electrical yearly consumption typically
point to constant daily rule-based operationally controlled build-
ings, here mainly present in education, office, assembly and public
type buildings, as Fig. 8 shows. Clusters 3 and 5 behave quite sim-
ilarly, with predominant flat profiles and low numbers of different
sequences across the time horizon. Cluster 4 presents a variety of
patterns yet with a clear predominant abcc sequence across the
temporal horizon. Clusters 0 and 1 both show a diversity of pro-
files, although cluster 1 presents less variability in SAX counts, a
likely consequence of it being less populated than cluster 0, the
most populated of all 6 groups, collecting close to 400 buildings.

We turn our attention to cluster 0, the most populated cluster of
the six, also presenting an interesting variety of motifs across both
evaluated years. In the following sub-section, we explore a within-
building analytical frame and switch to cuboid B for an in-site,
bottom-up, analytical approach.

3.2. In-site view

This analytical frame follows more closely the presented DayFil-
ter process of Miller et al., yet extends it with a multi-attribute
10
temporal exploration through the {time, attribute} cuboid, further
bridging the gap between top-down and bottom-up approaches.
We explore buildings grouped within the afore-determined cluster
0, thus substantially reducing the initially considered cube-space,
and iteratively slice the reduced cube by selecting individual build-
ings on which to perform automated pattern filtering. Time series
are scaled within each {attribute} dimensional-frame, transformed
to SAX sequences and filtered for motif identification using the
same formerly presented process. Fig. 9 presents the sax-grouped
daily profiles of building Fow_education_Melinda in the form of a
cascade heatmap, where motif sequences are explicitly tagged.
This allows impactful visual representation of the profiles, as well
as their per-sequence group size, in a cross attribute context. Links
between distributions of patterns from one dimensional attribute
to the other can thus be visually explored, e.g. two largest pre-
sented sequences within air temperature across the time horizon
are cccc and aaaa (can also include aaba), referring quite straight-



Fig. 8. Building type distribution across identified clusters.

Fig. 10. Cluster similarity index assessement of cross-attributes from Fow_educa-
tion_Melinda building diurnal motifs. Scatter points illustrate median values of the
evaluated similarity index across attributes, while the error bars cover the upper
and lower quantiles, representing value variance.
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forwardly to typical winter and summer periods, while chilled
water possess two similar principal groups, i.e., cccc and aaaa, hint-
ing to these identical seasonal periods. While this visualization dis-
play is powerful, the complexity endowed from exponentially
increasing association possibilities between cross-attribute motifs
can be limiting for human inspection. The dimensionality reduc-
tion provided by the ensuing clustering step takes up this problem,
in an {attribute} dimensional-frame. After visual inspection of the
confirmatory analysis’ similarity indexes presented in Fig. 10, we
fix the cluster number across attributes to be 4. This value shows
low WCSS range and norm while serving as an acceptable trade-
off between a reduced number of pattern groups and sufficiently
high group variety for detailed attribute pattern characterization.
The clustering results depicted under Fig. 11 exhibit close to homo-
geneous cluster sizes for air temperature alluding to the four sea-
sons of temperate climate zones. Hot and chilled water meter
patterns seem to behave in a mirrored fashion with consumption
peaks and drops located in either mornings and evenings or eve-
Fig. 9. SAX sequences across Fow_education_Melinda attributes illustrated by daily hea
are ploted but not tagged.
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nings and mornings respectively. The electricity meter group size
repartition seems closer to hot water consumption for this educa-
tion building which both seems to testify on the building’s opera-
tional activity; with three clusters presenting strong daily trends
and one close to null consumption, hinting at weekend and
holiday-type profiles.

As we inspect the temporal depth of the cuboid and how attri-
bute patterns are cross-distributed, our final cube-space explo-
ration step approaches temporal drill-in analysis, where the
complexity of multi-site, multi-attribute dimensions in a set
time–space frame is examined.
3.3. Temporal drill-in analysis

We investigate the {site, attribute} dimensions of cuboid C from
iterative daily slices of the building data cube. Supported by the
temporal cross-attribute exploration of the former cuboid B, we
target the most represented cluster group within the temporal
dimension, i.e. a typical day within the summer season, below
illustrated by the selection of the day 2016–06–07. Selected daily
tmaps normalized per attribute. SAX motifs are explicitly referenced while discords



Fig. 11. Dirunal pattern clusters across Fow_education_Melinda attributes illus-
trated by daily heatmaps normalized per attribute.

Fig. 12. Grouped building motifs SAX sequences across building stock and
attributes on 2016–06–07. Group member counts are presented on the right hand
side by a bar chart, and daily aggregate attribute-specific consumptions are
illustrated as heatmaps, echoing the classic OLAP approach.
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profiles are z-scaled per attribute, across the building stock then
SAX transformed, resulting in a singular daily sequence per cuboid
dimensions. Given the lack of temporal depth of the sequences,
notions of patterns and discords become meaningless along the
{time} dimension. We therefore divert these notions to the {site}
dimension, where buildings would be examined across their attri-
butes as either behaving similarly to other buildings or not, i.e.
motifs and discords respectively, given a certain threshold. We
enumerate buildings displaying similar cross-attribute sequences
and consider motifs for groups larger than 5 members. Fig. 12 pre-
sents aggregated daily attribute values annotated with SAX
sequences and building group motifs member counts. From this
cross-sectional view, it can be seen that the three most important
aggregates possess only electrical meter data with SAX sequences
of the three constant aaaa, bbbb and cccc profiles. Discord buildings
are filtered out following which clustering can be performed from a
weighted average of the daily multi-attribute time series.

Attribute averaging weights
Attributes
Electric
 Hot
Water
Chilled
Water
Air
Temperature
Sea Level
Pressure
0.7
 0.1
 0.1
 0.05
 0.05
Weights were designed to favor resource energy consumption data
from weather conditions. In particular, electric meter was weighted
as the preponderant attribute accounting for 70% of the time series
weighted average, as reported under Table I. The reduced one-
dimensional daily-series are then clustered across sites. Selection
of the optimal number of cluster is performed from visual inspec-
tion of the confirmatory analysis results presented under Fig. 13.
We select this number to be 4, given an over average silhouette
score of 0.6 and a flattening WCSS trend. Clustering results are
delineated under Fig. 14 in the form of quantile-profile heatmaps
for each attribute across the four obtained building clusters, grant-
ing a cross-{site, attribute} dimensional inspection of patterns. The
larger building cluster aggregates a total of 813 buildings together
while the smaller one only 19. Electrical patterns across the stock
seem to follow overall comparable trends, with consumption
increases and drops ranging between 6 and 10am and 7–9 pm for
their lower and upper quantiles respectively. This comes as a sur-
prising read given the prevalence of the constant SAX sequences
previously mentioned and could appear as a notable pitfall of the
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quantile heatmap visualizations, which solely show hourly quan-
tiles across the cluster instead of original daily profiles. Quite simi-
larly to the previously observed finding within cuboid B, chilled
water appears to be positively correlated to outside air temperature
across the building stock, with similar daily-temporal tendencies,
i.e., lower morning values increasing from 10am, peaking around
2 pm and decreasing in the evening with ranges from 6 to 9 pm.
Hot water, for the two smaller clusters, behaves in reverse to chilled
water, with a prominent daily peak in the early morning, suggesting
bathroom hot water consumption, while the larger N = 813 building
group possess a very flat to null consumption over the day, with
faint lower and higher demands in the morning and evening respec-
tively. Finally, the temperatures patterns across this selected day
are quite typical of warm summer seasons with steep morning
increases and smoother afternoon decays.

3.4. Towards multi-cube-space visualization

From the examined 2 dimensional lattice of the cube, we reach
for a multi-dimensional visual exploration of the highly-
dimensional 3D base-cuboid. Daily heatmaps have proven to be
powerful visualization tools for 3 dimensional plots, yet the com-
plexity endowed from base-cube visualization needs to be cut-
down. To this end we propose combining visual insights from the
three afore-examined cuboids to a recomposed, flattened, dimen-
sional visualization of the cube; as if one were studying the cube’s
pattern rather than the assembled 3-dimensional structure. Fig. 15
presents this multi-cube space visualization, where cuboid A,
grouping {site, time} dimensions, is presented on the lower left cor-
ner, cuboid B with {attribute, time} in the top right corner and
cuboid C, gathering {site, attribute} links both visuals from aligned
dimensional sections. Additional rehashed insights from cuboids
including {time} dimensions were supplemented with aggregated



Fig. 13. Cluster similarity index assessement of cross-building motifs stock from weighted averaged one-dimensional time-series from 2016 to 06–07.

Fig. 14. Motif-building clusters across attributes from day 2016–06–07 illustrated
by quantile heatmaps normalized per attribute. Top and lower horizontal heatmap
lines report the upper 75% and lower 25% quantiles per hour respectively, with a
range of 10 gradually decreasing quantiles in between.
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temporal outlooks, here illustrated with barplots resuming the SAX
sequences across the temporal study frame. This multi-
dimensional view allows distinct knowledge transfer and analyti-
cal examination from one dimensional and diagnostic-specific
study frame to the next. For instance, while the electricity SAX
sequence distribution of cluster 0 within cuboid A should echo that
of cuboid B, a building-element subset of cluster 0, the sequence
distributions presented are quite different from one another. This
stems from the differences in pre-mining normalization frames,
where cuboid A scaled electricity consumption over the entire
building stock, while cuboid B considered a fixed {site} selected
subset, consequently resulting in different alphabetical ranges
and breakpoints during the SAX transformation process. Yet simi-
lar heatmap tendencies may be observed from one cuboid view
to the next, i.e., both possess clear summer and winter typical con-
sumption trends with a flat weekend-like aaaa consumption
profile.

This highlights the importance of per cuboid diagnostic focus;
as data analytic choices might be relevantly made for isolated
cuboids, mining result comparisons from one cube sub-space to
the next ought to be treated cautiously, as a result of different
13
cuboid-specific mining steps. For a common and global multi-
dimensional analytical diagnostic, it becomes necessary to follow
identical mining tasks at every step of the process. For this work,
the importance of framing insight specific steps was chosen to fur-
ther highlight the significant role of dimensional-frame determina-
tion within the process of cube space mining.
4. Discussion

From the definition of a unified multidimensional data mining
framework tailored to building analytics, this work intends on
bridging the gap between the complexity endowed with big data’s
high-volume, high-variety and progress towards more inter-
pretable and reproducible research for building analysts. The
objective is to link applications to specific diagnostic approaches
from dimensionally-reduced cube-space regions. In this context,
results of the proposed mining framework implementation are
here discussed while considering other possible applications as
well as limitations encountered.

4.1. Insight driven mining

On the road towards more interpretable building analytics, def-
inition of the cube dimensional space linked to application-driven
insights per cuboid sub-regions has demonstrated great value.
From the exploration of the 2D cube lattice, we have covered the
established preeminent analytical methods, namely bottom-up
{attribute, time} and top-down {site, time} approaches, all the while
extending them with a temporal drill-in {site, attribute} analysis.
While an identical descriptive pattern filtering mining technique
was applied over the lattice, we meet each cuboid with a different
analytical angle and diagnostic-objective. It then becomes interest-
ingly relevant to contemplate the more complex analytics that
would arise approaching the last, most dimensionally-dense,
base-cuboid {site, attribute, time} region of the cube.

Given the previously defined analytical methods, one could
imagine tackling this cuboid from three subsequent angles, i.e.,
including either multiple attributes, sites or temporal-units of



Fig. 15. Data cube base-cuboid pattern visualization from 2-dimensional cuboid lattice insights, i.e., {site, time} bottom left, {attribute, time} top right and {site, attribute}
bottom right.
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interest within the existing analytical frames of cuboids A, B and C
respectively. As a conceptual illustration, approaching the base-
cube from cuboid A, would involve a classical top-down analytical
approach of building benchmarking extended through multi-
attribute considerations. While descending from cuboid B, through
the antagonist bottom-up approach, would imply in-site diagnostic
methods extended to other buildings, e.g., testing a methods’ scal-
ability. The temporal drill-in analytical method of cuboid C, lastly,
would examine additional days within its frame, adjusting time-
specific insights to a larger temporal frame of interest.

Additionally, while our implementation depicts a descriptive
mining technic, predictive applications share equal benefits from
cube space conception. Indeed, how to effectively evaluate and
select large number of feature, for example, fit naturally within
OLAM supported by explicit cube dimensional-space mapping.
Assessing contributions of feature combinations to the predictive
learning performance over the cube-space, allows systemic opti-
mal feature selection in the confirmatory analysis phase. Machine
leaning workflows could incorporate such techniques as an a priori
mining analysis to improve model performance. Employing pre-
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trained models within cuboids are another example of how cube
space-driven mining can be practiced in predictive applications
[64]. Investigation of this application, while outside the scope of
this study, reveals a promising future direction for this framework.

It subsequently becomes clear that the mining process is fully
application- as well as insight-driven. Applications such as energy
performance benchmarking and model calibration compel to top-
down approaches, while automated fault detection and diagnosis,
energy saving management, or rule-base knowledge discovery
entail classical bottom-up approaches. Likewise, temporal feature
engineering can necessitate temporal drill-in methods for, per
time-slice, cross-attribute, -building insights. These connect
reduced cube-space regions of interest to undertaken applications.

4.2. Visualizing knowledge

The importance of knowledge visualization for effective and
impactful result inspection is well established. However, when it
comes to high-dimensions it becomes particularly complex, yet
crucial to appropriately represent and link insights together. Inter-
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active OLAP visualization tools have already been developed and
widely used for data cube exploration, analysis and pattern extrac-
tions in the financial field [78], but, to the best of the authors
knowledge, close to none in the building sector. The proposed 3
dimensional data cube-pattern visualization paves the way to the
development of OLAM interactive visualization tools, where one
could imagine iteratively scrolling through the fixed dimensional
items of a cuboid. The building analyst could subsequently employ
navigational tools such as drilldown or rollup, through the dimen-
sional hierarchical relationships, e.g. the day slice width consid-
ered in cuboid C could be rolled-up to weekly slices or drilled-
down to quarter days for SAX sequence analysis.

4.3. Limitations

A notable limitation encountered from cube space mining was
the iterative need to reformat the data as well as adapting visual-
ization tools to every studied dimensional frame, which are very
time consuming tasks within the data mining process. In then
comes into consideration that developing interactive visual tools
tailored to OLAM analytics could provide interesting solutions,
yet not without challenging limitations. Computational burden
resulting from the mining process may render the interactivity of
the visual exploration too slow to fully profit from the tool itself.
Nonetheless, a priori computation of the visual cube from a set
of fixed parameters could be envisioned as a means to initially
coarsely characterize the cube and tackle exploratory responsive-
ness issues.
5. Conclusion

With this work, we have delineated a multi-dimensional, gen-
eric data mining framework tailored to big building data, effec-
tively framing which analytical techniques to follow in a step-
wise procedure. We appeal to benchmarking methods and apply
the proposed DM framework to an automated pattern filtering
application using a large building open data set for reproducible,
comparable and empirically validated results. Furthermore, we
delineate the existing underlying link between building data
dimensional space and building management applications. This
pushes further down the existing barriers separating building pro-
fessionals from effective building data dimensional-space targeting
given defined applications and insights of interest.

Future research challenges could entail in depth cube space
exploration for comprehensive building management application
study such as multi-automated fault diagnosis and detection.
Another interesting research focus emanating from this work could
undertake the determination of how dimensional analytical win-
dow frames, i.e. data granularities, window frame and horizon,
influence building data analytics and their outcome.
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