
Penambangan Data
[Data Mining]

Kode : SIT5255
Bobot : 2 SKS

Dosen Pengampu : Dr. Heny Pratiwi, S.Kom., M.Pd., M.TI

Session
Id

Country Session
Length
(sec)

Number of
Web Pages

viewed
Gender

Browser
Type

Buy

1 USA 982 8 Male IE No

2 China 811 10 Female Netscape No

3 USA 2125 45 Female Mozilla Yes

4 Germany 596 4 Male IE Yes

5 Australia 123 9 Male Mozilla No

… … … … … … …
10

Example of Association Rule:

{Number of Pages [5,10)  (Browser=Mozilla)}  {Buy = No}

How to apply association analysis formulation to non-
asymmetric binary variables?

 Transform categorical attribute into
asymmetric binary variables

 Introduce a new “item” for each distinct
attribute-value pair
 Example: replace Browser Type attribute with





 Browser Type = Internet Explorer
Browser Type = Mozilla

Browser Type = Mozilla

 Potential Issues
 What if attribute has many possible values



 Example: attribute country has more than 200
possible values
Many of the attribute values may have very low

support
 Potential solution: Aggregate the low-support attribute

values

 What if distribution of attribute values is highly
skewed



 Example: 95% of the visitors have Buy = No
Most of the items will be associated with (Buy=No)

item
 Potential solution: drop the highly frequent items

 Different kinds of rules:
 Age[21,35)  Salary[70k,120k)  Buy
 Salary[70k,120k)  Buy  Age: =28, =4

 Different methods:
 Discretization-based
 Statistics-based
 Non-discretization based

 minApriori

 Use discretization
 Unsupervised:

 Equal-width binning
 Equal-depth binning
 Clustering

 Supervised:
Class v1 v2 v3 v4 v5 v6 v7 v8 v9

Anomalous 0 0 20 10 20 0 0 0 0

Normal 150 100 0 0 0 100 100 150 100

bin1 bin3bin2

Attribute values, v

 Size of the discretized intervals affect
support & confidence

{Refund = No, (Income = $51,250)}  {Cheat = No}

{Refund = No, (60K  Income  80K)}  {Cheat = No}

{Refund = No, (0K  Income  1B)}  {Cheat = No}

 If intervals too small
 may not have enough support

 If intervals too large
 may not have enough confidence

 Potential solution: use all possible
intervals

 Example:
Browser=Mozilla  Buy=Yes  Age: =23

 Rule consequent consists of a continuous
variable, characterized by their statistics
 mean, median, standard deviation, etc.

 Approach:





Withhold the target variable from the rest of the data
Apply existing frequent itemset generation on the rest of
the data
For each frequent itemset, compute the descriptive
statistics for the corresponding target variable



Frequent itemset becomes a rule by introducing the target
variable as rule consequent

Apply statistical test to determine interestingness of the
rule

 How to determine whether an association
rule interesting?
 Compare the statistics for segment of

population covered by the rule vs segment of
population not covered by the rule:

A  B:  versus A  B: ’

 Statistical hypothesis testing:





 Null hypothesis: H0: ’ =  + 
Alternative hypothesis: H1: ’ >  + 
Z has zero mean and variance 1 under null

hypothesis

s2 s2
1  2

n1 n2

 '  
Z 

 Example:
r: Browser=Mozilla  Buy=Yes  Age: =23

 Rule is interesting if difference between  and ’ is
greater than 5 years (i.e.,  = 5)





For r, suppose n1 = 50, s1 = 3.5
For r’ (complement): n2 = 250, s2 = 6.5

 For 1-sided test at 95% confidence level, critical Z-value
for rejecting null hypothesis is 1.64.
Since Z is greater than 1.64, r is an interesting rule

 3.11

50 250

3.52 6.52
1  2

n1 n2

s2 s2
Z   '    30  23  5



Food

Bread

Milk

Skim 2%

Electronics

Computers Home

DesktopWheat White

Foremost Kemps

DVDLaptop Accessory TV

Printer Scanner

 Why should we incorporate concept
hierarchy?
 Rules at lower levels may not have enough

support to appear in any frequent itemsets

 Rules at lower levels of the hierarchy are
overly specific
 e.g., skim milk  white bread, 2% milk 

wheat bread,
skim milk  wheat bread, etc.

are indicative of association between milk and bread

 How do support and confidence vary as we
traverse the concept hierarchy?
 If X is the parent item for both X1 and X2, then
(X) ≤ (X1) + (X2)

 If (X1  Y1) ≥ minsup,
and X is parent of X1, Y is parent of Y1
then (X  Y1) ≥ minsup, (X1  Y) ≥ minsup

(X  Y) ≥ minsup

 If conf(X1  Y1) ≥ minconf,
then conf(X1  Y) ≥ minconf

 Approach 1:
 Extend current association rule formulation by

augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}
Augmented Transaction:

{skim milk, wheat bread, milk, bread, food}

 Issues:
 Items that reside at higher levels have much higher

support counts
 if support threshold is low, too many frequent patterns

involving items from the higher levels

Increased dimensionality of the data

 Approach 2:
 Generate frequent patterns at highest level first

 Then, generate frequent patterns at the next
highest level, and so on

 Issues:
 I/O requirements will increase dramatically

because we need to perform more passes over
the data

 May miss some potentially interesting cross-level
association patterns

 Sequence Mining
 Finding frequent subsequences from a collection of

sequences
 Time Series Motifs
 DNA/Protein Sequence Motifs

 Graph Mining
 Finding frequent (connected) subgraphs from a

collection of graphs
Tree Mining

 Finding frequent (embedded) subtrees from a set of
trees/graphs

Geometric Structure Mining

 Finding frequent substructures from 3-D or 2-D
geometric graphs

Among others…

10 15 20 25 30 35

2
3
5

6 1
1

Timeline

Object A:

Object B:

4
5
6

2 7
8
1
2

1
6

Object C:

1
7
8

Object Timestamp Events
A 10 2, 3, 5
A 20 6, 1
A 23 1
B 11 4, 5, 6
B 17 2
B 21 7, 8, 1, 2
B 28 1, 6
C 14 1, 8, 7

Sequence Database:

Sequence
Database

Sequence Element
(Transaction)

Event
(Item)

Customer Purchase history of a given
customer

A set of items bought by
a customer at time t

Books, diary products,
CDs, etc

Web Data Browsing activity of a
particular Web visitor

A collection of files
viewed by a Web visitor
after a single mouse click

Home page, index
page, contact info, etc

Event data History of events generated
by a given sensor

Events triggered by a
sensor at time t

Types of alarms
generated by sensors

Genome
sequences

DNA sequence of a
particular species

An element of the DNA
sequence

Bases A,T,G,C

Sequence

E1 E1
E2 E3 E2 E3

E4E2

Element
(Transaction) Event

(Item)

 A sequence is an ordered list of elements
(transactions)

s = < e1 e2 e3 … >



 Each element contains a collection of events (items)

ei = {i1, i2, …, ik}

Each element is attributed to a specific time or location

 Length of a sequence, |s|, is given by the number of
elements of the sequence

 A k-sequence is a sequence that contains k events
(items)

 Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital
Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping}
>

 Sequence of initiating events causing the nuclear
accident at 3-mile Island:
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin} {outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips} {reactor pressure
increases}>

 Sequence of books checked out at a library:
<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

 A sequence <a1 a2 … an> is contained in another
sequence <b1 b2 … bm> (m ≥ n) if there exist
integers
i1 < i2 < … < in such that a1  bi1 , a2  bi1, …, an 
bin

 The support of a subsequence w is defined as the
fraction of data sequences that contain w

 A sequential pattern is a frequent subsequence
(i.e., a subsequence whose support is ≥ minsup)

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {8} > < {2} {3,5} > Yes

< {1,2} {3,4} > < {1} {2} > No

< {2,4} {2,4} {2,5} > < {2} {4} > Yes

 Given:
 a database of sequences
 a user-specified minimum support threshold,

minsup

 Task:
 Find all subsequences with support ≥ minsup

 Given a sequence: <{a b} {c d e} {f} {g h i}>
 Examples of subsequences:

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.

 How many k-subsequences can be extracted from
a given n-sequence?

<{a b} {c d e} {f} {g h i}> n = 9

k=4: Y _ _ Y Y _ _ _ Y

<{a} {d e} {i}>

Answer :

   

n  
9  126   

k 4

Minsup = 50%

Examples of Frequent Subsequences:

< {1,2} >
< {2,3} >
< {2,4}>
< {3} {5}>

s=60%
s=60%
s=80%
s=80%

< {1} {2} > s=80%
< {2} {2} > s=60%
< {1} {2,3} > s=60%
< {2} {2,3} > s=60%
< {1,2} {2,3} > s=60%

Object Timestamp Events
A 1 1,2,4
A 2 2,3
A 3 5
B 1 1,2
B 2 2,3,4
C 1 1, 2
C 2 2,3,4
C 3 2,4,5
D 1 2
D 2 3, 4
D 3 4, 5
E 1 1, 3
E 2 2, 4, 5

 Given n events: i1, i2, i3, …, in

 Candidate 1-subsequences:
<{i1}>, <{i2}>, <{i3}>, …, <{in}>

 Candidate 2-subsequences:
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …,

<{in-1} {in}>

 Candidate 3-subsequences:
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2}

{i2}>, …,

<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>,
<{i1} {i1} {i2}>, …

 Step 1:
 Make the first pass over the sequence database D to yield all

the 1-element frequent sequences

 Step 2:

Repeat until no new frequent sequences are found
 Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th pass to
generate candidate sequences that contain k items

 Candidate Pruning:
 Prune candidate k-sequences that contain infrequent (k-1)-

subsequences

 Support Counting:
 Make a new pass over the sequence database D to find the support

for these candidate sequences

 Candidate Elimination:
 Eliminate candidate k-sequences whose actual support is less than

minsup

 Merging the sequences
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>
will produce the candidate sequence < {1} {2 3} {4 5}> because
the last two events in w2 (4 and 5) belong to the same element

 Merging the sequences
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}>
will produce the candidate sequence < {1} {2 3} {4} {5}>
because the last two events in w2 (4 and 5) do not belong to the
same element

 We do not have to merge the sequences
w1 =<{1} {2 6} {4}> and w2 =<{1} {2} {4 5}>
to produce the candidate < {1} {2 6} {4 5}> because if the
latter is a viable candidate, then it can be obtained by merging w1

with
< {1} {2 6} {5}>

< {1} {2} {3} >
< {1} {2 5} >
< {1} {5} {3} >
< {2} {3} {4} >
< {2 5} {3} >
< {3} {4} {5} >
< {5} {3 4} >

< {1} {2} {3} {4} >
< {1} {2 5} {3} >
< {1} {5} {3 4} >
< {2} {3} {4} {5} >
< {2 5} {3 4} > < {1} {2 5} {3} >

Frequent
3-sequences

Candidate
Generation

Candidate
Pruning

{D E}{A B} {C}
<= xg

<= ms

>ng

xg: max-gap

ng: min-gap

ms: maximum span

Data sequence Subsequence Contain?

< {2,4} {3,5,6} {4,7} {4,5}
{8} >

< {6} {5} > Yes

< {1} {2} {3} {4} {5}> < {1} {4} > No

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes

< {1,2} {3} {2,3} {3,4} {2,4}
{4,5}>

< {1,2} {5} > No

xg = 2, ng = 0, ms= 4

Mining Sequential Patterns with
Timing Constraints

 Approach 1:
 Mine sequential patterns without timing

constraints
 Postprocess the discovered patterns

 Approach 2:
 Modify GSP to directly prune candidates that

violate timing constraints
 Question:

 Does Apriori principle still hold?

Object Timestamp Events
A 1 1,2,4
A 2 2,3
A 3 5
B 1 1,2
B 2 2,3,4
C 1 1, 2
C 2 2,3,4
C 3 2,4,5
D 1 2
D 2 3, 4
D 3 4, 5
E 1 1, 3
E 2 2, 4, 5

Suppose:

gx = 1 (max-gap)

ng = 0 (min-gap)

sm = 5 (maximum span)

minsup = 60%

<{2} {5}> support = 40%

but

<{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Databases

 Extend association rule mining to finding frequent
subgraphs

 Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc

Homepage

Research

Artificial
Intelligence

Data Mining

a

b a

c c

b

(a) Labeled Graph

pq

p

p

r
s

t
r

t

qp

a

c

b

(b) Subgraph

p

s

t

p

a a

a

c

b

(c) Induced Subgraph

p

r
s

t
r

p

 Each transaction is a clique of items

Transaction
Id

Items

1 {A,B,C,D}
2 {A,B,E}
3 {B,C}
4 {A,B,D,E}
5 {B,C,D}

A

B

C

E
D

TID = 1:

a

b

e

c

p

q

r
p

a

b

d

p

r

G1 G2

q

e

a

p q
c

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …

 Node may contain duplicate labels
 Support and confidence

 How to define them?

 Additional constraints imposed by pattern
structure




Support and confidence are not the only constraints
Assumption: frequent subgraphs must be connected

 Apriori-like approach:
 Use frequent k-subgraphs to generate frequent (k+1)

subgraphs
 What is k?

 Support:
 number of graphs that contain a particular

subgraph

 Apriori principle still holds

 Level-wise (Apriori-like) approach:
 Vertex growing:

 k is the number of vertices

 Edge growing:
 k is the number of edges

a

a

e
p

q

r

p

a

G1

a

a

p

r
r

d

a

G2

p






0p

 0 p p q
 

p 0 r 0

 r 0 
q 0 0 0

G1
M 










r p


0 p p 0


p 0 r 0

 r 0 
0 0 r 0

G 2
M

a

p

a

q

e
p

a

G3 = join(G1,G2)

 0

0

 q

 0 p p 0 q
 
p 0 r 0 0

 r 0 r 
 0 0 r 0 0

0 0 0

M  pG3

r dr+

a

a

f
p

q

r

p

a

G1

a

a

p

r
r

f

a

G2

p

a

p

a

q

r

f
p

a

G3 = join(G1,G2)

r
+

 Find frequent 1-subgraphs
 Repeat

 Candidate generation
 Use frequent (k-1)-subgraphs to generate candidate k-

subgraph

 Candidate pruning
 Prune candidate subgraphs that contain infrequent

(k-1)-subgraphs

 Support counting
 Count the support of each remaining candidate

 Eliminate candidate k-subgraphs that are
infrequent
In practice, it is not as easy. There are many other issues

a

b

e

c

p

q

r
p

a

b

d

p

r

G1 G2

q

e

a

p q
c

r

b

p

G3

d

r
d

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1
G2
G3
G4

1 0 0 0 0 1 … 0
1 0 0 0 0 0 … 0
0 0 1 1 0 0 … 0
0 0 0 0 0 0 … 0

a e
q

c

d

p p

p

G4

r
r

p

a b c d ek=1
Frequent
Subgraphs

a b

p
c d

p
c e

q
a e

r
b d

p
a b

d

r

p
d c

e

p

(Pruned candidate)

Minimum support count = 2

k=2
Frequent
Subgraphs

k=3
Candidate
Subgraphs

 In Apriori:
 Merging two frequent k-itemsets will produce a

candidate (k+1)-itemset

 In frequent subgraph mining (vertex/edge
growing)
 Merging two frequent k-subgraphs may

produce more than one candidate (k+1)-
subgraph

Multiplicity of Candidates
(Vertex Growing)

a

a

e
p

q

r

p

a

G1

a

a

p

r
r

d

a

G2

p


0p

 0 p p q
 

p 0 r 0

 r 0 
 q 0 0 0

G1
M


r p

 0 p p 0
 

p 0 r 0

 r 0 
 0 0 r 0

G 2
M

a

p

a

q

e
p

a

G3 = join(G1,G2)







 0


? 

0

 q

 0 p p 0 q
 

p 0 r 0 0
M   p r 0 r


 0 0 r 0

0 0 ?

G 3

r dr

?

+

Multiplicity of Candidates (Edge
growing)
 Case 1: identical vertex labels

a

b
e

c

a

b
e

c

+

a

b
e

c

ea

b
e

c

+

 Case 2: Core contains identical labels
a

a
a

a

b

c

a

a
a

a

c

a

a
a

a

c

b

b

a

a
a

a

b
a

a
a

a

c

Core: The (k-1) subgraph that is common
between the joint graphs

a a

b a

+

a

ab a

a

b a

a

b a

ab a

b a a b a a

 Case 3: Core multiplicity
a a a

A(1) A(2)

• B (5) B (6)

• B (7) B (8)

•

• A(3) A(4)

• A(2) A(1)

• B (7) B (6)

• B (5) B (8)

•
• A(3) A(4)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 0 1 0 1 0 0
A(2) 1 1 1 0 0 0 1 0
A(3) 0 1 1 1 1 0 0 0
A(4) 1 0 1 1 0 0 0 1
B(5) 0 0 1 0 1 0 1 1
B(6) 1 0 0 0 0 1 1 1
B(7) 0 1 0 0 1 1 1 0
B(8) 0 0 0 1 1 1 0 1

 A graph is isomorphic if it is topologically
equivalent to another graph

A

A

A A

B A

B

A

B

B

A

A

B B

B

B

 Test for graph isomorphism is needed:
 During candidate generation step, to

determine whether a candidate has been
generated

 During candidate pruning step, to check
whether its
(k-1)-subgraphs are frequent

 During candidate counting, to check whether a
candidate is contained within another graph

 Use canonical labeling to handle isomorphism



 Map each graph into an ordered string representation
(known as its code) such that two isomorphic graphs will
be mapped to the same canonical encoding
Example:
 Lexicographically largest adjacency matrix

 00


1

10
0 0 1 0

 0 1

1 1 0

1 1

String: 0010001111010110

01

01
0 1 1 1

 0 1 
1 1 0 0
 0 0 

Canonical: 0111101011001000

Frequent Subgraph Mining
Approaches
 Apriori-based approach

 AGM/AcGM: Inokuchi, et al. (PKDD’00)
 FSG: Kuramochi and Karypis (ICDM’01)
 PATH#: Vanetik and Gudes (ICDM’02,

ICDM’04)
 FFSM: Huan, et al. (ICDM’03)

 Pattern growth approach
 MoFa, Borgelt and Berthold (ICDM’02)
 gSpan: Yan and Han (ICDM’02)
 Gaston: Nijssen and Kok (KDD’04)

Properties of Graph Mining Algorithms

 Search order
 breadth vs. depth

 Generation of candidate subgraphs
 apriori vs. pattern growth

 Elimination of duplicate subgraphs
 passive vs. active

 Support calculation
 embedding store or not

 Discover order of patterns
 path  tree  graph

Mining Frequent Subgraphs in a Single
Graph

 A large graph is more interesting
 Software, social network, Internet, biological

networks

 What are the frequent subgraphs in a
single graph?
 How to define frequency concept?
 Apriori property

Sekian &
Terima Kasih

