Cluster Analysis: Basic
Concepts and Methods

Imagine that you are the Director of Customer Relationships at AllElectronics, and you have five
managers working for you. You would like to organize all the company’s customers into
five groups so that each group can be assigned to a different manager. Strategically, you
would like that the customers in each group are as similar as possible. Moreover, two
given customers having very different business patterns should not be placed in the same
group. Your intention behind this business strategy is to develop customer relationship
campaigns that specifically target each group, based on common features shared by the
customers per group. What kind of data mining techniques can help you to accomplish
this task?

Unlike in classification, the class label (or group_ID) of each customer is unknown.
You need to discover these groupings. Given a large number of customers and many
attributes describing customer profiles, it can be very costly or even infeasible to have a
human study the data and manually come up with a way to partition the customers into
strategic groups. You need a clustering tool to help.

Clustering is the process of grouping a set of data objects into multiple groups or clus-
ters so that objects within a cluster have high similarity, but are very dissimilar to objects
in other clusters. Dissimilarities and similarities are assessed based on the attribute val-
ues describing the objects and often involve distance measures.! Clustering as a data
mining tool has its roots in many application areas such as biology, security, business
intelligence, and Web search.

This chapter presents the basic concepts and methods of cluster analysis. In
Section 10.1, we introduce the topic and study the requirements of clustering meth-
ods for massive amounts of data and various applications. You will learn several basic
clustering techniques, organized into the following categories: partitioning methods
(Section 10.2), hierarchical methods (Section 10.3), density-based methods (Section 10.4),
and grid-based methods (Section 10.5). In Section 10.6, we briefly discuss how to evaluate

!Data similarity and dissimilarity are discussed in detail in Section 2.4. You may want to refer to that
section for a quick review.

Data Mining: Concepts and Techniques 4 4 3
(© 2012 Elsevier Inc. All rights reserved.

444 Chapter 10 Cluster Analysis: Basic Concepts and Methods

clustering methods. A discussion of advanced methods of clustering is reserved for
Chapter 11.

Cluster Analysis

This section sets up the groundwork for studying cluster analysis. Section 10.1.1 defines
cluster analysis and presents examples of where it is useful. In Section 10.1.2, you will
learn aspects for comparing clustering methods, as well as requirements for clustering.
An overview of basic clustering techniques is presented in Section 10.1.3.

[0.1.] What Is Cluster Analysis?

Cluster analysis or simply clustering is the process of partitioning a set of data objects
(or observations) into subsets. Each subset is a cluster, such that objects in a cluster
are similar to one another, yet dissimilar to objects in other clusters. The set of clusters
resulting from a cluster analysis can be referred to as a clustering. In this context, dif-
ferent clustering methods may generate different clusterings on the same data set. The
partitioning is not performed by humans, but by the clustering algorithm. Hence, clus-
tering is useful in that it can lead to the discovery of previously unknown groups within
the data.

Cluster analysis has been widely used in many applications such as business intel-
ligence, image pattern recognition, Web search, biology, and security. In business
intelligence, clustering can be used to organize a large number of customers into groups,
where customers within a group share strong similar characteristics. This facilitates the
development of business strategies for enhanced customer relationship management.
Moreover, consider a consultant company with a large number of projects. To improve
project management, clustering can be applied to partition projects into categories based
on similarity so that project auditing and diagnosis (to improve project delivery and
outcomes) can be conducted effectively.

In image recognition, clustering can be used to discover clusters or “subclasses” in
handwritten character recognition systems. Suppose we have a data set of handwritten
digits, where each digit is labeled as either 1, 2, 3, and so on. Note that there can be a
large variance in the way in which people write the same digit. Take the number 2, for
example. Some people may write it with a small circle at the left bottom part, while some
others may not. We can use clustering to determine subclasses for “2,” each of which
represents a variation on the way in which 2 can be written. Using multiple models
based on the subclasses can improve overall recognition accuracy.

Clustering has also found many applications in Web search. For example, a keyword
search may often return a very large number of hits (i.e., pages relevant to the search)
due to the extremely large number of web pages. Clustering can be used to organize the
search results into groups and present the results in a concise and easily accessible way.
Moreover, clustering techniques have been developed to cluster documents into topics,
which are commonly used in information retrieval practice.

10.1.2

10.1 Cluster Analysis 445

As a data mining function, cluster analysis can be used as a standalone tool to gain
insight into the distribution of data, to observe the characteristics of each cluster, and
to focus on a particular set of clusters for further analysis. Alternatively, it may serve
as a preprocessing step for other algorithms, such as characterization, attribute subset
selection, and classification, which would then operate on the detected clusters and the
selected attributes or features.

Because a cluster is a collection of data objects that are similar to one another within
the cluster and dissimilar to objects in other clusters, a cluster of data objects can be
treated as an implicit class. In this sense, clustering is sometimes called automatic clas-
sification. Again, a critical difference here is that clustering can automatically find the
groupings. This is a distinct advantage of cluster analysis.

Clustering is also called data segmentation in some applications because cluster-
ing partitions large data sets into groups according to their similarity. Clustering can
also be used for outlier detection, where outliers (values that are “far away” from any
cluster) may be more interesting than common cases. Applications of outlier detection
include the detection of credit card fraud and the monitoring of criminal activities in
electronic commerce. For example, exceptional cases in credit card transactions, such
as very expensive and infrequent purchases, may be of interest as possible fraudulent
activities. Outlier detection is the subject of Chapter 12.

Data clustering is under vigorous development. Contributing areas of research
include data mining, statistics, machine learning, spatial database technology, informa-
tion retrieval, Web search, biology, marketing, and many other application areas. Owing
to the huge amounts of data collected in databases, cluster analysis has recently become
a highly active topic in data mining research.

As a branch of statistics, cluster analysis has been extensively studied, with the
main focus on distance-based cluster analysis. Cluster analysis tools based on k-means,
k-medoids, and several other methods also have been built into many statistical analysis
software packages or systems, such as S-Plus, SPSS, and SAS. In machine learning, recall
that classification is known as supervised learning because the class label information is
given, that is, the learning algorithm is supervised in that it is told the class member-
ship of each training tuple. Clustering is known as unsupervised learning because the
class label information is not present. For this reason, clustering is a form of learning
by observation, rather than learning by examples. In data mining, efforts have focused
on finding methods for efficient and effective cluster analysis in large databases. Active
themes of research focus on the scalability of clustering methods, the effectiveness of
methods for clustering complex shapes (e.g., nonconvex) and types of data (e.g., text,
graphs, and images), high-dimensional clustering techniques (e.g., clustering objects
with thousands of features), and methods for clustering mixed numerical and nominal
data in large databases.

Requirements for Cluster Analysis

Clustering is a challenging research field. In this section, you will learn about the require-
ments for clustering as a data mining tool, as well as aspects that can be used for
comparing clustering methods.

446

Chapter 10 Cluster Analysis: Basic Concepts and Methods

The following are typical requirements of clustering in data mining.

Scalability: Many clustering algorithms work well on small data sets containing fewer
than several hundred data objects; however, a large database may contain millions or
even billions of objects, particularly in Web search scenarios. Clustering on only a
sample of a given large data set may lead to biased results. Therefore, highly scalable
clustering algorithms are needed.

Ability to deal with different types of attributes: Many algorithms are designed to
cluster numeric (interval-based) data. However, applications may require clustering
other data types, such as binary, nominal (categorical), and ordinal data, or mixtures
of these data types. Recently, more and more applications need clustering techniques
for complex data types such as graphs, sequences, images, and documents.

Discovery of clusters with arbitrary shape: Many clustering algorithms determine
clusters based on Euclidean or Manhattan distance measures (Chapter 2). Algorithms
based on such distance measures tend to find spherical clusters with similar size and
density. However, a cluster could be of any shape. Consider sensors, for example,
which are often deployed for environment surveillance. Cluster analysis on sensor
readings can detect interesting phenomena. We may want to use clustering to find
the frontier of a running forest fire, which is often not spherical. It is important to
develop algorithms that can detect clusters of arbitrary shape.

Requirements for domain knowledge to determine input parameters: Many clus-
tering algorithms require users to provide domain knowledge in the form of input
parameters such as the desired number of clusters. Consequently, the clustering
results may be sensitive to such parameters. Parameters are often hard to determine,
especially for high-dimensionality data sets and where users have yet to grasp a deep
understanding of their data. Requiring the specification of domain knowledge not
only burdens users, but also makes the quality of clustering difficult to control.

Ability to deal with noisy data: Most real-world data sets contain outliers and/or
missing, unknown, or erroneous data. Sensor readings, for example, are often
noisy—some readings may be inaccurate due to the sensing mechanisms, and some
readings may be erroneous due to interferences from surrounding transient objects.
Clustering algorithms can be sensitive to such noise and may produce poor-quality
clusters. Therefore, we need clustering methods that are robust to noise.

Incremental clustering and insensitivity to input order: In many applications,
incremental updates (representing newer data) may arrive at any time. Some clus-
tering algorithms cannot incorporate incremental updates into existing clustering
structures and, instead, have to recompute a new clustering from scratch. Cluster-
ing algorithms may also be sensitive to the input data order. That is, given a set
of data objects, clustering algorithms may return dramatically different clusterings
depending on the order in which the objects are presented. Incremental clustering
algorithms and algorithms that are insensitive to the input order are needed.

10.1 Cluster Analysis 447

Capability of clustering high-dimensionality data: A data set can contain numerous
dimensions or attributes. When clustering documents, for example, each keyword
can be regarded as a dimension, and there are often thousands of keywords. Most
clustering algorithms are good at handling low-dimensional data such as data sets
involving only two or three dimensions. Finding clusters of data objects in a high-
dimensional space is challenging, especially considering that such data can be very
sparse and highly skewed.

Constraint-based clustering: Real-world applications may need to perform clus-
tering under various kinds of constraints. Suppose that your job is to choose the
locations for a given number of new automatic teller machines (ATMs) in a city. To
decide upon this, you may cluster households while considering constraints such as
the city’s rivers and highway networks and the types and number of customers per
cluster. A challenging task is to find data groups with good clustering behavior that
satisfy specified constraints.

Interpretability and usability: Users want clustering results to be interpretable,
comprehensible, and usable. That is, clustering may need to be tied in with spe-
cific semantic interpretations and applications. It is important to study how an
application goal may influence the selection of clustering features and clustering
methods.

The following are orthogonal aspects with which clustering methods can be
compared:

The partitioning criteria: In some methods, all the objects are partitioned so that
no hierarchy exists among the clusters. That is, all the clusters are at the same level
conceptually. Such a method is useful, for example, for partitioning customers into
groups so that each group has its own manager. Alternatively, other methods parti-
tion data objects hierarchically, where clusters can be formed at different semantic
levels. For example, in text mining, we may want to organize a corpus of documents
into multiple general topics, such as “politics” and “sports,” each of which may have
subtopics, For instance, “football,” “basketball,” “baseball,” and “hockey” can exist as
subtopics of “sports.” The latter four subtopics are at a lower level in the hierarchy
than “sports.”

Separation of clusters: Some methods partition data objects into mutually exclusive
clusters. When clustering customers into groups so that each group is taken care of by
one manager, each customer may belong to only one group. In some other situations,
the clusters may not be exclusive, that is, a data object may belong to more than one
cluster. For example, when clustering documents into topics, a document may be
related to multiple topics. Thus, the topics as clusters may not be exclusive.

Similarity measure: Some methods determine the similarity between two objects
by the distance between them. Such a distance can be defined on Euclidean space,

448

Chapter 10 Cluster Analysis: Basic Concepts and Methods

a road network, a vector space, or any other space. In other methods, the similarity
may be defined by connectivity based on density or contiguity, and may not rely on
the absolute distance between two objects. Similarity measures play a fundamental
role in the design of clustering methods. While distance-based methods can often
take advantage of optimization techniques, density- and continuity-based methods
can often find clusters of arbitrary shape.

Clustering space: Many clustering methods search for clusters within the entire given
data space. These methods are useful for low-dimensionality data sets. With high-
dimensional data, however, there can be many irrelevant attributes, which can make
similarity measurements unreliable. Consequently, clusters found in the full space
are often meaningless. It’s often better to instead search for clusters within different
subspaces of the same data set. Subspace clustering discovers clusters and subspaces
(often of low dimensionality) that manifest object similarity.

To conclude, clustering algorithms have several requirements. These factors include
scalability and the ability to deal with different types of attributes, noisy data, incremen-
tal updates, clusters of arbitrary shape, and constraints. Interpretability and usability are
also important. In addition, clustering methods can differ with respect to the partition-
ing level, whether or not clusters are mutually exclusive, the similarity measures used,
and whether or not subspace clustering is performed.

10.1.3 Overview of Basic Clustering Methods

There are many clustering algorithms in the literature. It is difficult to provide a crisp
categorization of clustering methods because these categories may overlap so that a
method may have features from several categories. Nevertheless, it is useful to present
a relatively organized picture of clustering methods. In general, the major fundamental
clustering methods can be classified into the following categories, which are discussed
in the rest of this chapter.

Partitioning methods: Given a set of n objects, a partitioning method constructs k
partitions of the data, where each partition represents a cluster and k < n. That is, it
divides the data into k groups such that each group must contain at least one object.
In other words, partitioning methods conduct one-level partitioning on data sets.
The basic partitioning methods typically adopt exclusive cluster separation. That is,
each object must belong to exactly one group. This requirement may be relaxed, for
example, in fuzzy partitioning techniques. References to such techniques are given in
the bibliographic notes (Section 10.9).

Most partitioning methods are distance-based. Given k, the number of partitions
to construct, a partitioning method creates an initial partitioning. It then uses an
iterative relocation technique that attempts to improve the partitioning by moving
objects from one group to another. The general criterion of a good partitioning is
that objects in the same cluster are “close” or related to each other, whereas objects
in different clusters are “far apart” or very different. There are various kinds of other

10.1 Cluster Analysis 449

criteria for judging the quality of partitions. Traditional partitioning methods can
be extended for subspace clustering, rather than searching the full data space. This is
useful when there are many attributes and the data are sparse.

Achieving global optimality in partitioning-based clustering is often computation-
ally prohibitive, potentially requiring an exhaustive enumeration of all the possible
partitions. Instead, most applications adopt popular heuristic methods, such as
greedy approaches like the k-means and the k-medoids algorithms, which progres-
sively improve the clustering quality and approach a local optimum. These heuristic
clustering methods work well for finding spherical-shaped clusters in small- to
medium-size databases. To find clusters with complex shapes and for very large data
sets, partitioning-based methods need to be extended. Partitioning-based clustering
methods are studied in depth in Section 10.2.

Hierarchical methods: A hierarchical method creates a hierarchical decomposition of
the given set of data objects. A hierarchical method can be classified as being either
agglomerative or divisive, based on how the hierarchical decomposition is formed.
The agglomerative approach, also called the bottom-up approach, starts with each
object forming a separate group. It successively merges the objects or groups close
to one another, until all the groups are merged into one (the topmost level of the
hierarchy), or a termination condition holds. The divisive approach, also called the
top-down approach, starts with all the objects in the same cluster. In each successive
iteration, a cluster is split into smaller clusters, until eventually each object is in one
cluster, or a termination condition holds.

Hierarchical clustering methods can be distance-based or density- and continuity-
based. Various extensions of hierarchical methods consider clustering in subspaces
as well.

Hierarchical methods suffer from the fact that once a step (merge or split) is done,
it can never be undone. This rigidity is useful in that it leads to smaller computa-
tion costs by not having to worry about a combinatorial number of different choices.
Such techniques cannot correct erroneous decisions; however, methods for improv-
ing the quality of hierarchical clustering have been proposed. Hierarchical clustering
methods are studied in Section 10.3.

Density-based methods: Most partitioning methods cluster objects based on the dis-
tance between objects. Such methods can find only spherical-shaped clusters and
encounter difficulty in discovering clusters of arbitrary shapes. Other clustering
methods have been developed based on the notion of density. Their general idea
is to continue growing a given cluster as long as the density (number of objects or
data points) in the “neighborhood” exceeds some threshold. For example, for each
data point within a given cluster, the neighborhood of a given radius has to contain
at least a minimum number of points. Such a method can be used to filter out noise
or outliers and discover clusters of arbitrary shape.

Density-based methods can divide a set of objects into multiple exclusive clus-
ters, or a hierarchy of clusters. Typically, density-based methods consider exclusive
clusters only, and do not consider fuzzy clusters. Moreover, density-based methods
can be extended from full space to subspace clustering. Density-based clustering
methods are studied in Section 10.4.

450 Chapter 10 Cluster Analysis: Basic Concepts and Methods

Grid-based methods: Grid-based methods quantize the object space into a finite
number of cells that form a grid structure. All the clustering operations are per-
formed on the grid structure (i.e., on the quantized space). The main advantage of
this approach is its fast processing time, which is typically independent of the num-
ber of data objects and dependent only on the number of cells in each dimension in
the quantized space.

Using grids is often an efficient approach to many spatial data mining problems,
including clustering. Therefore, grid-based methods can be integrated with other
clustering methods such as density-based methods and hierarchical methods. Grid-
based clustering is studied in Section 10.5.

These methods are briefly summarized in Figure 10.1. Some clustering algorithms
integrate the ideas of several clustering methods, so that it is sometimes difficult to clas-
sify a given algorithm as uniquely belonging to only one clustering method category.
Furthermore, some applications may have clustering criteria that require the integration
of several clustering techniques.

In the following sections, we examine each clustering method in detail. Advanced
clustering methods and related issues are discussed in Chapter 11. In general, the
notation used is as follows. Let D be a data set of # objects to be clustered. An object is
described by d variables, where each variable is also called an attribute or a dimension,

Method General Characteristics
Partitioning — Find mutually exclusive clusters of spherical shape
methods — Distance-based

— May use mean or medoid (etc.) to represent cluster center
— Effective for small- to medium-size data sets

Hierarchical — Clustering is a hierarchical decomposition (i.e., multiple levels)

methods — Cannot correct erroneous merges or splits

— May incorporate other techniques like microclustering or
consider object “linkages”

Density-based — Can find arbitrarily shaped clusters

methods — Clusters are dense regions of objects in space that are
separated by low-density regions

— Cluster density: Each point must have a minimum number of
points within its “neighborhood”

— May filter out outliers
Grid-based — Use a multiresolution grid data structure
methods — Fast processing time (typically independent of the number of

data objects, yet dependent on grid size)

Figure 10.1 Overview of clustering methods discussed in this chapter. Note that some algorithms may
combine various methods.

10.2 Partitioning Methods 451

and therefore may also be referred to as a point in a d-dimensional object space. Objects
are represented in bold italic font (e.g., p).

Partitioning Methods

The simplest and most fundamental version of cluster analysis is partitioning, which
organizes the objects of a set into several exclusive groups or clusters. To keep the
problem specification concise, we can assume that the number of clusters is given as
background knowledge. This parameter is the starting point for partitioning methods.

Formally, given a data set, D, of n objects, and k, the number of clusters to form, a
partitioning algorithm organizes the objects into k partitions (k < #), where each par-
tition represents a cluster. The clusters are formed to optimize an objective partitioning
criterion, such as a dissimilarity function based on distance, so that the objects within a
cluster are “similar” to one another and “dissimilar” to objects in other clusters in terms
of the data set attributes.

In this section you will learn the most well-known and commonly used partitioning
methods—k-means (Section 10.2.1) and k-medoids (Section 10.2.2). You will also learn
several variations of these classic partitioning methods and how they can be scaled up
to handle large data sets.

[0.2.] k-Means: A Centroid-Based Technique

Suppose a data set, D, contains 1 objects in Euclidean space. Partitioning methods dis-
tribute the objects in D into k clusters, Ci,...,Cy, thatis, C; C D and G;N CG=10 for
(1 <14,j<k). An objective function is used to assess the partitioning quality so that
objects within a cluster are similar to one another but dissimilar to objects in other
clusters. This is, the objective function aims for high intracluster similarity and low
intercluster similarity.

A centroid-based partitioning technique uses the centroid of a cluster, C;, to represent
that cluster. Conceptually, the centroid of a cluster is its center point. The centroid can
be defined in various ways such as by the mean or medoid of the objects (or points)
assigned to the cluster. The difference between an object p € C; and ¢;, the representa-
tive of the cluster, is measured by dist(p,c;), where dist(x,y) is the Euclidean distance
between two points x and y. The quality of cluster C; can be measured by the within-
cluster variation, which is the sum of squared error between all objects in C; and the
centroid c;, defined as

k
E= Z Z dist(p,c;)?, (10.1)

i=1 peC;

where E is the sum of the squared error for all objects in the data set; p is the point in
space representing a given object; and ¢; is the centroid of cluster C; (both p and ¢; are
multidimensional). In other words, for each object in each cluster, the distance from

452

Chapter 10 Cluster Analysis: Basic Concepts and Methods

the object to its cluster center is squared, and the distances are summed. This objective
function tries to make the resulting k clusters as compact and as separate as possible.

Optimizing the within-cluster variation is computationally challenging. In the worst
case, we would have to enumerate a number of possible partitionings that are exponen-
tial to the number of clusters, and check the within-cluster variation values. It has been
shown that the problem is NP-hard in general Euclidean space even for two clusters (i.e.,
k = 2). Moreover, the problem is NP-hard for a general number of clusters k even in the
2-D Euclidean space. If the number of clusters k and the dimensionality of the space d
are fixed, the problem can be solved in time O(ndk‘H log 1), where n is the number of
objects. To overcome the prohibitive computational cost for the exact solution, greedy
approaches are often used in practice. A prime example is the k-means algorithm, which
is simple and commonly used.

“How does the k-means algorithm work?” The k-means algorithm defines the centroid
of a cluster as the mean value of the points within the cluster. It proceeds as follows. First,
it randomly selects k of the objects in D, each of which initially represents a cluster mean
or center. For each of the remaining objects, an object is assigned to the cluster to which
it is the most similar, based on the Euclidean distance between the object and the cluster
mean. The k-means algorithm then iteratively improves the within-cluster variation.
For each cluster, it computes the new mean using the objects assigned to the cluster in
the previous iteration. All the objects are then reassigned using the updated means as
the new cluster centers. The iterations continue until the assignment is stable, that is,
the clusters formed in the current round are the same as those formed in the previous
round. The k-means procedure is summarized in Figure 10.2.

Algorithm: k-means. The k-means algorithm for partitioning, where each cluster’s center
is represented by the mean value of the objects in the cluster.

Input:

k: the number of clusters,

D: a data set containing # objects.

Output: A set of k clusters.
Method:

(1) arbitrarily choose k objects from D as the initial cluster centers;

(2) repeat

(3) (re)assign each object to the cluster to which the object is the most similar,
based on the mean value of the objects in the cluster;

(4) update the cluster means, that is, calculate the mean value of the objects for
each cluster;

(5) until no change;

Figure 10.2 The k-means partitioning algorithm.

10.2 Partitioning Methods 453

e ~
,——.\\ _,’. AN
/ 4 []
1@ \\ / \,
I o 1 [}
\ >
;e L 1® e
\ _ -
PY \ o=~
|) - ..\
-
\ .// \
\ 3 1
N o/ ° ,
~So_ A .
o ____-

(a) Initial clustering (b) Iterate (c) Final clustering

Figure 10.3 Clustering of a set of objects using the k-means method; for (b) update cluster centers and

Example 10.1

reassign objects accordingly (the mean of each cluster is marked by a +).

Clustering by k-means partitioning. Consider a set of objects located in 2-D space,
as depicted in Figure 10.3(a). Let k = 3, that is, the user would like the objects to be
partitioned into three clusters.

According to the algorithm in Figure 10.2, we arbitrarily choose three objects as
the three initial cluster centers, where cluster centers are marked by a +. Each object
is assigned to a cluster based on the cluster center to which it is the nearest. Such a
distribution forms silhouettes encircled by dotted curves, as shown in Figure 10.3(a).

Next, the cluster centers are updated. That is, the mean value of each cluster is recal-
culated based on the current objects in the cluster. Using the new cluster centers, the
objects are redistributed to the clusters based on which cluster center is the nearest.
Such a redistribution forms new silhouettes encircled by dashed curves, as shown in
Figure 10.3(b).

This process iterates, leading to Figure 10.3(c). The process of iteratively reassigning
objects to clusters to improve the partitioning is referred to as iterative relocation. Even-
tually, no reassignment of the objects in any cluster occurs and so the process terminates.
The resulting clusters are returned by the clustering process. L]

The k-means method is not guaranteed to converge to the global optimum and often
terminates at a local optimum. The results may depend on the initial random selection
of cluster centers. (You will be asked to give an example to show this as an exercise.)
To obtain good results in practice, it is common to run the k-means algorithm multiple
times with different initial cluster centers.

The time complexity of the k-means algorithm is O(nkt), where n is the total number
of objects, k is the number of clusters, and ¢ is the number of iterations. Normally, k < n
and t < n. Therefore, the method is relatively scalable and efficient in processing large
data sets.

There are several variants of the k-means method. These can differ in the selection
of the initial k-means, the calculation of dissimilarity, and the strategies for calculating
cluster means.

454 Chapter 10 Cluster Analysis: Basic Concepts and Methods

The k-means method can be applied only when the mean of a set of objects is defined.
This may not be the case in some applications such as when data with nominal attributes
are involved. The k-modes method is a variant of k-means, which extends the k-means
paradigm to cluster nominal data by replacing the means of clusters with modes. It uses
new dissimilarity measures to deal with nominal objects and a frequency-based method
to update modes of clusters. The k-means and the k-modes methods can be integrated
to cluster data with mixed numeric and nominal values.

The necessity for users to specify k, the number of clusters, in advance can be seen as a
disadvantage. There have been studies on how to overcome this difficulty, however, such
as by providing an approximate range of k values, and then using an analytical technique
to determine the best k by comparing the clustering results obtained for the different k
values. The k-means method is not suitable for discovering clusters with nonconvex
shapes or clusters of very different size. Moreover, it is sensitive to noise and outlier data
points because a small number of such data can substantially influence the mean value.

“How can we make the k-means algorithm more scalable?” One approach to mak-
ing the k-means method more efficient on large data sets is to use a good-sized set of
samples in clustering. Another is to employ a filtering approach that uses a spatial hier-
archical data index to save costs when computing means. A third approach explores the
microclustering idea, which first groups nearby objects into “microclusters” and then
performs k-means clustering on the microclusters. Microclustering is further discussed
in Section 10.3.

10.2.2 k-Medoids: A Representative Object-Based Technique

Example 10.2

The k-means algorithm is sensitive to outliers because such objects are far away from the
majority of the data, and thus, when assigned to a cluster, they can dramatically distort
the mean value of the cluster. This inadvertently affects the assignment of other objects
to clusters. This effect is particularly exacerbated due to the use of the squared-error
function of Eq. (10.1), as observed in Example 10.2.

A drawback of k-means. Consider six points in 1-D space having the values
1,2,3,8,9,10, and 25, respectively. Intuitively, by visual inspection we may imagine the
points partitioned into the clusters {1,2,3} and {8,9, 10}, where point 25 is excluded
because it appears to be an outlier. How would k-means partition the values? If we
apply k-means using k=2 and Eq. (10.1), the partitioning {{1,2,3},{8,9,10,25}} has
the within-cluster variation

1-2242=-22+B=22+8—-13)>4+(9—13)>+ (10 — 13)> + (25 — 13)> =196,

given that the mean of cluster {1,2,3} is 2 and the mean of {8,9,10,25} is 13. Compare
this to the partitioning {{1,2,3,8},{9,10,25}}, for which k-means computes the within-
cluster variation as

(1=35)%4(2—=3.5)2+(3—13.5)%+ (8 —3.5)% + (9 — 14.67)?
+ (10 — 14.67)> + (25 — 14.67)* = 189.67,

10.2 Partitioning Methods 455

given that 3.5 is the mean of cluster {1,2,3,8} and 14.67 is the mean of cluster {9, 10,25}.
The latter partitioning has the lowest within-cluster variation; therefore, the k-means
method assigns the value 8 to a cluster different from that containing 9 and 10 due to
the outlier point 25. Moreover, the center of the second cluster, 14.67, is substantially far
from all the members in the cluster. [

“How can we modify the k-means algorithm to diminish such sensitivity to outliers?”
Instead of taking the mean value of the objects in a cluster as a reference point, we can
pick actual objects to represent the clusters, using one representative object per cluster.
Each remaining object is assigned to the cluster of which the representative object is
the most similar. The partitioning method is then performed based on the principle of
minimizing the sum of the dissimilarities between each object p and its corresponding
representative object. That is, an absolute-error criterion is used, defined as

k
E=Y_" dist(p,0i), (10.2)

i=1 peC;

where E is the sum of the absolute error for all objects p in the data set, and o; is the
representative object of C;. This is the basis for the k-medoids method, which groups n
objects into k clusters by minimizing the absolute error (Eq. 10.2).

When k=1, we can find the exact median in O(n?) time. However, when k is a
general positive number, the k-medoid problem is NP-hard.

The Partitioning Around Medoids (PAM) algorithm (see Figure 10.5 later) is a pop-
ular realization of k-medoids clustering. It tackles the problem in an iterative, greedy
way. Like the k-means algorithm, the initial representative objects (called seeds) are
chosen arbitrarily. We consider whether replacing a representative object by a nonrep-
resentative object would improve the clustering quality. All the possible replacements
are tried out. The iterative process of replacing representative objects by other objects
continues until the quality of the resulting clustering cannot be improved by any replace-
ment. This quality is measured by a cost function of the average dissimilarity between
an object and the representative object of its cluster.

Specifically, let o01,. .., 0k be the current set of representative objects (i.e., medoids).
To determine whether a nonrepresentative object, denoted by 0,4ndom- 1s @ good replace-
ment for a current medoid o; (1 <j<k), we calculate the distance from every
object p to the closest object in the set {o1,...,0j_1,0random>0j11,.-.,0k}, and
use the distance to update the cost function. The reassignments of objects to
{01,...,0j-1,0random> 0j+1, . . ., 0k} are simple. Suppose object p is currently assigned to
a cluster represented by medoid o; (Figure 10.4a or b). Do we need to reassign p to a
different cluster if o; is being replaced by 0r4ndom? Object p needs to be reassigned to
either 0454dom Or some other cluster represented by o; (i # j), whichever is the closest.
For example, in Figure 10.4(a), p is closest to o; and therefore is reassigned to o;. In
Figure 10.4(b), however, p is closest t0 0,44dom and so is reassigned to 0,4pdom- What if,
instead, p is currently assigned to a cluster represented by some other object o0;, i # j?

456

Chapter 10

Figure 10.4

Cluster Analysis: Basic Concepts and Methods

Yo . ¥ Y
- \o\ij 9j T _7_] % e Data object
/ p + Cluster center
+ p¥-—+ + -t — Before swapping
Orandom Orandom Orandom)4 Orandom | - - After swapping
(a) Reassigned (b) Reassigned (c¢) No change (d) Reassigned
to 0; to o too

random random

Four cases of the cost function for k-medoids clustering.

Object o remains assigned to the cluster represented by o; as long as o is still closer to o;
than to 0,44dom (Figure 10.4c). Otherwise, o is reassigned to 04ndom (Figure 10.4d).

Each time a reassignment occurs, a difference in absolute error, E, is contributed to
the cost function. Therefore, the cost function calculates the difference in absolute-error
value if a current representative object is replaced by a nonrepresentative object. The
total cost of swapping is the sum of costs incurred by all nonrepresentative objects. If
the total cost is negative, then o; is replaced or swapped with 0,4440m because the actual
absolute-error E is reduced. If the total cost is positive, the current representative object,
0j, is considered acceptable, and nothing is changed in the iteration.

“Which method is more robust—k-means or k-medoids?” The k-medoids method is
more robust than k-means in the presence of noise and outliers because a medoid is less
influenced by outliers or other extreme values than a mean. However, the complexity
of each iteration in the k-medoids algorithm is O(k(n — k)?). For large values of n
and k, such computation becomes very costly, and much more costly than the k-means
method. Both methods require the user to specify k, the number of clusters.

“How can we scale up the k-medoids method?” A typical k-medoids partitioning algo-
rithm like PAM (Figure 10.5) works effectively for small data sets, but does not scale well
for large data sets. To deal with larger data sets, a sampling-based method called CLARA
(Clustering LARge Applications) can be used. Instead of taking the whole data set into
consideration, CLARA uses a random sample of the data set. The PAM algorithm is then
applied to compute the best medoids from the sample. Ideally, the sample should closely
represent the original data set. In many cases, a large sample works well if it is created so
that each object has equal probability of being selected into the sample. The representa-
tive objects (medoids) chosen will likely be similar to those that would have been chosen
from the whole data set. CLARA builds clusterings from multiple random samples and
returns the best clustering as the output. The complexity of computing the medoids on
a random sample is O(ks®> + k(n — k)), where s is the size of the sample, k is the number
of clusters, and # is the total number of objects. CLARA can deal with larger data sets
than PAM.

The effectiveness of CLARA depends on the sample size. Notice that PAM searches
for the best k-medoids among a given data set, whereas CLARA searches for the best
k-medoids among the selected sample of the data set. CLARA cannot find a good
clustering if any of the best sampled medoids is far from the best k-medoids. If an object

10.3 Hierarchical Methods 457

Algorithm: k-medoids. PAM, a k-medoids algorithm for partitioning based on medoid
or central objects.

Input:

k: the number of clusters,

D: a data set containing # objects.

Output: A set of k clusters.

Method:
(1) arbitrarily choose k objects in D as the initial representative objects or seeds;
(2) repeat
(3) assign each remaining object to the cluster with the nearest representative object;
(4) randomly select a nonrepresentative object, 0,andoms
(5) compute the total cost, S, of swapping representative object, 0j, with 0r4ndom;
(6) if S < 0 then swap 0j with 0,440 to form the new set of k representative objects;

(7) until no change;

Figure 10.5 PAM, a k-medoids partitioning algorithm.

is one of the best k-medoids but is not selected during sampling, CLARA will never find
the best clustering. (You will be asked to provide an example demonstrating this as an
exercise.)

“How might we improve the quality and scalability of CLARA?” Recall that when
searching for better medoids, PAM examines every object in the data set against every
current medoid, whereas CLARA confines the candidate medoids to only a random
sample of the data set. A randomized algorithm called CLARANS (Clustering Large
Applications based upon RANdomized Search) presents a trade-off between the cost
and the effectiveness of using samples to obtain clustering.

First, it randomly selects k objects in the data set as the current medoids. It then
randomly selects a current medoid x and an object y that is not one of the current
medoids. Can replacing x by y improve the absolute-error criterion? If yes, the replace-
ment is made. CLARANS conducts such a randomized search I times. The set of the
current medoids after the [steps is considered a local optimum. CLARANS repeats this
randomized process m times and returns the best local optimal as the final result.

Hierarchical Methods

While partitioning methods meet the basic clustering requirement of organizing a set of
objects into a number of exclusive groups, in some situations we may want to partition
our data into groups at different levels such as in a hierarchy. A hierarchical clustering
method works by grouping data objects into a hierarchy or “tree” of clusters.
Representing data objects in the form of a hierarchy is useful for data summarization
and visualization. For example, as the manager of human resources at AllElectronics,

458

Chapter 10 Cluster Analysis: Basic Concepts and Methods

you may organize your employees into major groups such as executives, managers, and
staff. You can further partition these groups into smaller subgroups. For instance, the
general group of staff can be further divided into subgroups of senior officers, officers,
and trainees. All these groups form a hierarchy. We can easily summarize or characterize
the data that are organized into a hierarchy, which can be used to find, say, the average
salary of managers and of officers.

Consider handwritten character recognition as another example. A set of handwrit-
ing samples may be first partitioned into general groups where each group corresponds
to a unique character. Some groups can be further partitioned into subgroups since
a character may be written in multiple substantially different ways. If necessary, the
hierarchical partitioning can be continued recursively until a desired granularity is
reached.

In the previous examples, although we partitioned the data hierarchically, we did not
assume that the data have a hierarchical structure (e.g., managers are at the same level
in our AllElectronics hierarchy as staff). Our use of a hierarchy here is just to summarize
and represent the underlying data in a compressed way. Such a hierarchy is particularly
useful for data visualization.

Alternatively, in some applications we may believe that the data bear an underly-
ing hierarchical structure that we want to discover. For example, hierarchical clustering
may uncover a hierarchy for AllElectronics employees structured on, say, salary. In the
study of evolution, hierarchical clustering may group animals according to their bio-
logical features to uncover evolutionary paths, which are a hierarchy of species. As
another example, grouping configurations of a strategic game (e.g., chess or checkers) in
a hierarchical way may help to develop game strategies that can be used to train players.

In this section, you will study hierarchical clustering methods. Section 10.3.1 begins
with a discussion of agglomerative versus divisive hierarchical clustering, which organize
objects into a hierarchy using a bottom-up or top-down strategy, respectively. Agglo-
merative methods start with individual objects as clusters, which are iteratively merged
to form larger clusters. Conversely, divisive methods initially let all the given objects
form one cluster, which they iteratively split into smaller clusters.

Hierarchical clustering methods can encounter difficulties regarding the selection
of merge or split points. Such a decision is critical, because once a group of objects is
merged or split, the process at the next step will operate on the newly generated clusters.
It will neither undo what was done previously, nor perform object swapping between
clusters. Thus, merge or split decisions, if not well chosen, may lead to low-quality
clusters. Moreover, the methods do not scale well because each decision of merge or
split needs to examine and evaluate many objects or clusters.

A promising direction for improving the clustering quality of hierarchical meth-
ods is to integrate hierarchical clustering with other clustering techniques, resulting in
multiple-phase (or multiphase) clustering. We introduce two such methods, namely
BIRCH and Chameleon. BIRCH (Section 10.3.3) begins by partitioning objects hierar-
chically using tree structures, where the leaf or low-level nonleaf nodes can be
viewed as “microclusters” depending on the resolution scale. It then applies other

10.3 Hierarchical Methods 459

clustering algorithms to perform macroclustering on the microclusters. Chameleon
(Section 10.3.4) explores dynamic modeling in hierarchical clustering.

There are several orthogonal ways to categorize hierarchical clustering methods. For
instance, they may be categorized into algorithmic methods, probabilistic methods, and
Bayesian methods. Agglomerative, divisive, and multiphase methods are algorithmic,
meaning they consider data objects as deterministic and compute clusters according
to the deterministic distances between objects. Probabilistic methods use probabilistic
models to capture clusters and measure the quality of clusters by the fitness of mod-
els. We discuss probabilistic hierarchical clustering in Section 10.3.5. Bayesian methods
compute a distribution of possible clusterings. That is, instead of outputting a single
deterministic clustering over a data set, they return a group of clustering structures and
their probabilities, conditional on the given data. Bayesian methods are considered an
advanced topic and are not discussed in this book.

[0.3.1 Agglomerative versus Divisive Hierarchical Clustering

Example 10.3

A hierarchical clustering method can be either agglomerative or divisive, depending on
whether the hierarchical decomposition is formed in a bottom-up (merging) or top-
down (splitting) fashion. Let’s have a closer look at these strategies.

An agglomerative hierarchical clustering method uses a bottom-up strategy. It typ-
ically starts by letting each object form its own cluster and iteratively merges clusters
into larger and larger clusters, until all the objects are in a single cluster or certain termi-
nation conditions are satisfied. The single cluster becomes the hierarchy’s root. For the
merging step, it finds the two clusters that are closest to each other (according to some
similarity measure), and combines the two to form one cluster. Because two clusters are
merged per iteration, where each cluster contains at least one object, an agglomerative
method requires at most # iterations.

A divisive hierarchical clustering method employs a top-down strategy. It starts by
placing all objects in one cluster, which is the hierarchy’s root. It then divides the root
cluster into several smaller subclusters, and recursively partitions those clusters into
smaller ones. The partitioning process continues until each cluster at the lowest level
is coherent enough—either containing only one object, or the objects within a cluster
are sufficiently similar to each other.

In either agglomerative or divisive hierarchical clustering, a user can specify the
desired number of clusters as a termination condition.

Agglomerative versus divisive hierarchical clustering. Figure 10.6 shows the appli-
cation of AGNES (AGglomerative NESting), an agglomerative hierarchical clustering
method, and DIANA (Dlvisive ANAlysis), a divisive hierarchical clustering method, on
a data set of five objects, {a, b, ¢, d, e}. Initially, AGNES, the agglomerative method, places
each object into a cluster of its own. The clusters are then merged step-by-step according
to some criterion. For example, clusters C; and C, may be merged if an object in C; and
an object in C; form the minimum Euclidean distance between any two objects from

460

Chapter 10 Cluster Analysis: Basic Concepts and Methods

. 1 2 4
Agglomerative Stelp 0 Stelp Stelp Stelp 3 Stelp

(AGNES)

\

Divisive
T
Step 0 (DIANA)

<<
<

T T T T
Step 4 Step 3 Step 2 Step 1

Figure 10.6 Agglomerative and divisive hierarchical clustering on data objects {a, b, c,d, e}.

Level a b c d e
1=0 41.0
=1 LJ 108 o
1=2 LJ B
10.6 =
=)
=3 104 =
£
I=4 102«
‘ 40.0

Figure 10.7 Dendrogram representation for hierarchical clustering of data objects {a,b,c,d, e}.

different clusters. This is a single-linkage approach in that each cluster is represented
by all the objects in the cluster, and the similarity between two clusters is measured
by the similarity of the closest pair of data points belonging to different clusters. The
cluster-merging process repeats until all the objects are eventually merged to form one
cluster.

DIANA, the divisive method, proceeds in the contrasting way. All the objects are used
to form one initial cluster. The cluster is split according to some principle such as the
maximum Euclidean distance between the closest neighboring objects in the cluster. The
cluster-splitting process repeats until, eventually, each new cluster contains only a single
object. (]

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together (in an agglomerative
method) or partitioned (in a divisive method) step-by-step. Figure 10.7 shows a den-
drogram for the five objects presented in Figure 10.6, where I = 0 shows the five objects
as singleton clusters at level 0. At] = 1, objects a and b are grouped together to form the

10.3 Hierarchical Methods 461

first cluster, and they stay together at all subsequent levels. We can also use a vertical axis
to show the similarity scale between clusters. For example, when the similarity of two
groups of objects, {a,b} and {c,d, e}, is roughly 0.16, they are merged together to form a
single cluster.

A challenge with divisive methods is how to partition a large cluster into several
smaller ones. For example, there are 2"~! — 1 possible ways to partition a set of 7 objects
into two exclusive subsets, where 7 is the number of objects. When # is large, it is com-
putationally prohibitive to examine all possibilities. Consequently, a divisive method
typically uses heuristics in partitioning, which can lead to inaccurate results. For the
sake of efficiency, divisive methods typically do not backtrack on partitioning decisions
that have been made. Once a cluster is partitioned, any alternative partitioning of this
cluster will not be considered again. Due to the challenges in divisive methods, there are
many more agglomerative methods than divisive methods.

10.3.2 Distance Measures in Algorithmic Methods

Whether using an agglomerative method or a divisive method, a core need is to measure
the distance between two clusters, where each cluster is generally a set of objects.

Four widely used measures for distance between clusters are as follows, where [p — p’|
is the distance between two objects or points, p and p’; m; is the mean for cluster, Cj;
and n; is the number of objects in C;. They are also known as linkage measures.

Minimum distance: dist,,;,(C;, C) = migl {lp—2'1} (10.3)
P €Cj

Maximum distance: dist;;0(C;, Cj) = max {|p—p'l} (10.4)
pECi,p’ECj

Mean distance: distyean(Ci, Cj) = |m; — m;| (10.5)

. . 1
Average distance: dist;,, (C;, Cj) = — Z p—7I (10.6)
nln] pEC,',p'ECj

When an algorithm uses the minimum distance, d,,;n(C;, C;), to measure the distance
between clusters, it is sometimes called a nearest-neighbor clustering algorithm. More-
over, if the clustering process is terminated when the distance between nearest clusters
exceeds a user-defined threshold, it is called a single-linkage algorithm. If we view the
data points as nodes of a graph, with edges forming a path between the nodes in a cluster,
then the merging of two clusters, C; and Cj, corresponds to adding an edge between the
nearest pair of nodes in C; and C;. Because edges linking clusters always go between dis-
tinct clusters, the resulting graph will generate a tree. Thus, an agglomerative hierar-
chical clustering algorithm that uses the minimum distance measure is also called a

462 Chapter 10 Cluster Analysis: Basic Concepts and Methods

Example 10.4

10.3.3

minimal spanning tree algorithm, where a spanning tree of a graph is a tree that
connects all vertices, and a minimal spanning tree is the one with the least sum of edge
weights.

When an algorithm uses the maximum distance, dyqx(Ci, C;), to measure the distance
between clusters, it is sometimes called a farthest-neighbor clustering algorithm. If the
clustering process is terminated when the maximum distance between nearest clusters
exceeds a user-defined threshold, it is called a complete-linkage algorithm. By viewing
data points as nodes of a graph, with edges linking nodes, we can think of each cluster as
a complete subgraph, that is, with edges connecting all the nodes in the clusters. The dis-
tance between two clusters is determined by the most distant nodes in the two clusters.
Farthest-neighbor algorithms tend to minimize the increase in diameter of the clusters
at each iteration. If the true clusters are rather compact and approximately equal size,
the method will produce high-quality clusters. Otherwise, the clusters produced can be
meaningless.

The previous minimum and maximum measures represent two extremes in mea-
suring the distance between clusters. They tend to be overly sensitive to outliers or
noisy data. The use of mean or average distance is a compromise between the mini-
mum and maximum distances and overcomes the outlier sensitivity problem. Whereas
the mean distance is the simplest to compute, the average distance is advantageous in that
it can handle categoric as well as numeric data. The computation of the mean vector for
categoric data can be difficult or impossible to define.

Single versus complete linkages. Let us apply hierarchical clustering to the data set of
Figure 10.8(a). Figure 10.8(b) shows the dendrogram using single linkage. Figure 10.8(c)
shows the case using complete linkage, where the edges between clusters {A, B,], H} and
{C,D, G, F,E} are omitted for ease of presentation. This example shows that by using
single linkages we can find hierarchical clusters defined by local proximity, whereas
complete linkage tends to find clusters opting for global closeness. (]

There are variations of the four essential linkage measures just discussed. For exam-
ple, we can measure the distance between two clusters by the distance between the
centroids (i.e., the central objects) of the clusters.

BIRCH: Multiphase Hierarchical Clustering
Using Clustering Feature Trees

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is designed for
clustering a large amount of numeric data by integrating hierarchical clustering (at the
initial microclustering stage) and other clustering methods such as iterative partitioning
(at the later macroclustering stage). It overcomes the two difficulties in agglomerative
clustering methods: (1) scalability and (2) the inability to undo what was done in the
previous step.

BIRCH uses the notions of clustering feature to summarize a cluster, and clus-
tering feature tree (CF-tree) to represent a cluster hierarchy. These structures help

10.3 Hierarchical Methods 463

A B C D
[I J e o
OF
® o oo
J H G F
(a) Data set
A B C D
Nl []
J H G F A B ¢cC D E F G H J

(b) Clustering using single linkage

& :i. -
J H G F A B H J E F G C D
(¢) Clustering using complete linkage

Figure 10.8 Hierarchical clustering using single and complete linkages.

the clustering method achieve good speed and scalability in large or even streaming
databases, and also make it effective for incremental and dynamic clustering of incoming
objects.

Consider a cluster of n d-dimensional data objects or points. The clustering feature
(CF) of the cluster is a 3-D vector summarizing information about clusters of objects. It
is defined as

CF = (1, LS, SS), (10.7)

where LS is the linear sum of the 7 points (i.e., Y ., x;), and SS is the square sum of the
data points (i.e., Y 1_; x;%).

A clustering feature is essentially a summary of the statistics for the given cluster.
Using a clustering feature, we can easily derive many useful statistics of a cluster. For
example, the cluster’s centroid, xy, radius, R, and diameter, D, are

xp = =—, (10.8)
n

464 Chapter 10 Cluster Analysis: Basic Concepts and Methods

Example 10.5

> (i —x0)’
i=1

R | = _\/nSS—2L52+nLS

> 10.9
> (10.9)

\ n

2D (xi—x)’
o | == _ |2nSS—2LS* (10.10)
N -1\ an—-1» '

Here, R is the average distance from member objects to the centroid, and D is the aver-
age pairwise distance within a cluster. Both R and D reflect the tightness of the cluster
around the centroid.

Summarizing a cluster using the clustering feature can avoid storing the detailed
information about individual objects or points. Instead, we only need a constant size
of space to store the clustering feature. This is the key to BIRCH efficiency in space.
Moreover, clustering features are additive. That is, for two disjoint clusters, C; and G,
with the clustering features CF; = (n1,LS;,SS1) and CF, = (n,LS;, SS,), respectively,
the clustering feature for the cluster that formed by merging C; and G, is simply

CF, + CF, = (n; + mp, LS; + LS, SS1 + SS3). (10.11)

Clustering feature. Suppose there are three points, (2,5),(3,2), and (4,3), in a cluster,
C;. The clustering feature of C; is

CF; = (3,243 44,5+ 2+3),(22 + 32 + 42,52 + 22 + 32)) = (3, (9, 10), (29, 38)).

Suppose that Cj is disjoint to a second cluster, C,, where CF, = (3, (35,36), (417,440)).
The clustering feature of a new cluster, Cs, that is formed by merging C; and G, is
derived by adding CF; and CF,. That is,

CF3 = (34 3,(9 + 35,10 4 36), (29 + 417, 38 + 440)) = (6, (44,46), (446,478)). m

A CF-tree is a height-balanced tree that stores the clustering features for a hierar-
chical clustering. An example is shown in Figure 10.9. By definition, a nonleaf node in
a tree has descendants or “children.” The nonleaf nodes store sums of the CFs of their
children, and thus summarize clustering information about their children. A CF-tree
has two parameters: branching factor, B, and threshold, T. The branching factor specifies
the maximum number of children per nonleaf node. The threshold parameter specifies
the maximum diameter of subclusters stored at the leaf nodes of the tree. These two
parameters implicitly control the resulting tree’s size.

Given a limited amount of main memory, an important consideration in BIRCH
is to minimize the time required for input/output (I/O). BIRCH applies a multiphase
clustering technique: A single scan of the data set yields a basic, good clustering, and

10.3 Hierarchical Methods 465

| CF, | CF, | ----- | CF, | Root level

‘ CFy | CFy, | """ | CF | -—— ---- First level

Figure 10.9 CF-tree structure.

one or more additional scans can optionally be used to further improve the quality. The
primary phases are

Phase 1: BIRCH scans the database to build an initial in-memory CF-tree, which
can be viewed as a multilevel compression of the data that tries to preserve the data’s
inherent clustering structure.

Phase 2: BIRCH applies a (selected) clustering algorithm to cluster the leaf nodes of
the CF-tree, which removes sparse clusters as outliers and groups dense clusters into
larger ones.

For Phase 1, the CF-tree is built dynamically as objects are inserted. Thus, the method
is incremental. An object is inserted into the closest leaf entry (subcluster). If the dia-
meter of the subcluster stored in the leaf node after insertion is larger than the threshold
value, then the leaf node and possibly other nodes are split. After the insertion of the
new object, information about the object is passed toward the root of the tree. The size
of the CF-tree can be changed by modifying the threshold. If the size of the memory
that is needed for storing the CF-tree is larger than the size of the main memory, then a
larger threshold value can be specified and the CF-tree is rebuilt.

The rebuild process is performed by building a new tree from the leaf nodes of the old
tree. Thus, the process of rebuilding the tree is done without the necessity of rereading
all the objects or points. This is similar to the insertion and node split in the construc-
tion of B+-trees. Therefore, for building the tree, data has to be read just once. Some
heuristics and methods have been introduced to deal with outliers and improve the qual-
ity of CF-trees by additional scans of the data. Once the CF-tree is built, any clustering
algorithm, such as a typical partitioning algorithm, can be used with the CF-tree in
Phase 2.

“How effective is BIRCH?” The time complexity of the algorithm is O(n), where n
is the number of objects to be clustered. Experiments have shown the linear scalability
of the algorithm with respect to the number of objects, and good quality of clustering
of the data. However, since each node in a CF-tree can hold only a limited number of
entries due to its size, a CF-tree node does not always correspond to what a user may
consider a natural cluster. Moreover, if the clusters are not spherical in shape, BIRCH
does not perform well because it uses the notion of radius or diameter to control the
boundary of a cluster.

466 Chapter 10 Cluster Analysis: Basic Concepts and Methods

The ideas of clustering features and CF-trees have been applied beyond BIRCH. The
ideas have been borrowed by many others to tackle problems of clustering streaming
and dynamic data.

10.3.4 Chameleon: Multiphase Hierarchical Clustering
Using Dynamic Modeling

Chameleon is a hierarchical clustering algorithm that uses dynamic modeling to deter-
mine the similarity between pairs of clusters. In Chameleon, cluster similarity is assessed
based on (1) how well connected objects are within a cluster and (2) the proximity of
clusters. That is, two clusters are merged if their interconnectivity is high and they are
close together. Thus, Chameleon does not depend on a static, user-supplied model and
can automatically adapt to the internal characteristics of the clusters being merged. The
merge process facilitates the discovery of natural and homogeneous clusters and applies
to all data types as long as a similarity function can be specified.

Figure 10.10 illustrates how Chameleon works. Chameleon uses a k-nearest-neighbor
graph approach to construct a sparse graph, where each vertex of the graph represents
a data object, and there exists an edge between two vertices (objects) if one object is
among the k-most similar objects to the other. The edges are weighted to reflect the
similarity between objects. Chameleon uses a graph partitioning algorithm to partition
the k-nearest-neighbor graph into a large number of relatively small subclusters such
that it minimizes the edge cut. That is, a cluster C is partitioned into subclusters C; and
C; so as to minimize the weight of the edges that would be cut should C be bisected into
Ci and C,. It assesses the absolute interconnectivity between clusters C; and C;.

Chameleon then uses an agglomerative hierarchical clustering algorithm that itera-
tively merges subclusters based on their similarity. To determine the pairs of most similar
subclusters, it takes into account both the interconnectivity and the closeness of the clus-
ters. Specifically, Chameleon determines the similarity between each pair of clusters C;
and C; according to their relative interconnectivity, RI(C;, C;), and their relative closeness,
RC(G;, C)).

The relative interconnectivity, RI(C;, Gy, between two clusters, C; and G, is defined
as the absolute interconnectivity between C; and G, normalized with respect to the

k-nearest-neighbor graph Final clusters

Data set Construct

a sparse Partition A g é Merge
graph the graph % 4 partitions
_—>

$v

Figure 10.10 Chameleon: hierarchical clustering based on k-nearest neighbors and dynamic modeling.
Source: Based on Karypis, Han, and Kumar [KHK99].

10.3 Hierarchical Methods 467

internal interconnectivity of the two clusters, C; and C;. That is,

|ECic,,cl

RI(C;, C) = ,
(6) L(ECG| + [EC)

(10.12)

where EC(c;,c;} is the edge cut as previously defined for a cluster containing both C;
and C;. Similarly, ECc; (or ECCJ.) is the minimum sum of the cut edges that partition
C; (or G) into two roughly equal parts.

The relative closeness, RC(C;, C;), between a pair of clusters, C; and C;, is the abso-
lute closeness between C; and Cj, normalized with respect to the internal closeness of
the two clusters, C; and C;. It is defined as

§EC{C,-,CJ-)
RC(C;, C) = , (10.13)

IG5 G135
GG SECe; T TGTFIGTSECG

where EEC‘C_ ¢, 1s the average weight of the edges that connect vertices in C; to vertices
]

in Gj, and EECC,» (or SECCj) is the average weight of the edges that belong to the min-
cut bisector of cluster C; (or G;).

Chameleon has been shown to have greater power at discovering arbitrarily shaped
clusters of high quality than several well-known algorithms such as BIRCH and density-
based DBSCAN (Section 10.4.1). However, the processing cost for high-dimensional
data may require O(r?) time for n objects in the worst case.

10.3.5 Probabilistic Hierarchical Clustering

Algorithmic hierarchical clustering methods using linkage measures tend to be easy to
understand and are often efficient in clustering. They are commonly used in many clus-
tering analysis applications. However, algorithmic hierarchical clustering methods can
suffer from several drawbacks. First, choosing a good distance measure for hierarchical
clustering is often far from trivial. Second, to apply an algorithmic method, the data
objects cannot have any missing attribute values. In the case of data that are partially
observed (i.e., some attribute values of some objects are missing), it is not easy to apply
an algorithmic hierarchical clustering method because the distance computation cannot
be conducted. Third, most of the algorithmic hierarchical clustering methods are heuris-
tic, and at each step locally search for a good merging/splitting decision. Consequently,
the optimization goal of the resulting cluster hierarchy can be unclear.

Probabilistic hierarchical clustering aims to overcome some of these disadvantages
by using probabilistic models to measure distances between clusters.

One way to look at the clustering problem is to regard the set of data objects to be
clustered as a sample of the underlying data generation mechanism to be analyzed or,
formally, the generative model. For example, when we conduct clustering analysis on
a set of marketing surveys, we assume that the surveys collected are a sample of the
opinions of all possible customers. Here, the data generation mechanism is a probability

468 Chapter 10 Cluster Analysis: Basic Concepts and Methods

Example 10.6

distribution of opinions with respect to different customers, which cannot be obtained
directly and completely. The task of clustering is to estimate the generative model as
accurately as possible using the observed data objects to be clustered.

In practice, we can assume that the data generative models adopt common distri-
bution functions, such as Gaussian distribution or Bernoulli distribution, which are
governed by parameters. The task of learning a generative model is then reduced to
finding the parameter values for which the model best fits the observed data set.

Generative model. Suppose we are given a set of 1-D points X = {xj,...,x,} for
clustering analysis. Let us assume that the data points are generated by a Gaussian
distribution,

N o 2= ! (Jﬂyz 10.14
[—— 20
(/"LI) 2 e > (.)

where the parameters are ;4 (the mean) and o2 (the variance).
The probability that a point x; € X is then generated by the model is

_=w?

e 27 (10.15)

P(xilp,0?) =
2w o?

Consequently, the likelihood that X is generated by the model is

LN (1,0 : X) = P(X|11,0%) ﬁ L - (10.16)
1,0%) 1 X) = P(X|u,0%) = e W :
i V2mo?

The task of learning the generative model is to find the parameters 1 and o such
that the likelihood L(N (1,02) : X) is maximized, that is, finding

N (1o,0¢) = argmax{L(N (n,0%) : X)}, (10.17)
where max{L(N (,02) : X)} is called the maximum likelihood. [

Given a set of objects, the quality of a cluster formed by all the objects can be
measured by the maximum likelihood. For a set of objects partitioned into m clusters
Cy,...,Cp, the quality can be measured by

QUCr,...,Cud) = [[P(Ch, (10.18)

i=1

10.3 Hierarchical Methods 469

where P() is the maximum likelihood. If we merge two clusters, C; and C,, into a
cluster, C;; U C;,, then, the change in quality of the overall clustering is

QU{Crs-., G} = {C;, G H VLG, U Gy) — QUG- Cin})

Hl— P(C) p(cjlucjz) -
P(Cj)P(Cp) HP(C)

e P(Cj, UCy))
; —1). 10.19
1:[)< Ci)P(Cy,) ()

When choosing to merge two clusters in hierarchical clustering, []2, P(C;) is constant
for any pair of clusters. Therefore, given clusters C; and C;, the distance between them
can be measured by

P(CUC

dist(C;,C)) = —log 1Y D) (10.20)

P(C1)P(C)
A probabilistic hierarchical clustering method can adopt the agglomerative clustering
framework, but use probabilistic models (Eq. 10.20) to measure the distance between
clusters.

Upon close observation of Eq. (10.19), we see that merging two clusters may not

always lead to an improvement in clustering quality, that is, P((C“)—P(éj_)) may be less
2

than 1. For example, assume that Gaussian distribution functions are used in the model
of Figure 10.11. Although merging clusters C; and G, results in a cluster that better fits a
Gaussian distribution, merging clusters C; and C4 lowers the clustering quality because
no Gaussian functions can fit the merged cluster well.

Based on this observation, a probabilistic hierarchical clustering scheme can start
with one cluster per object, and merge two clusters, C; and G, if the distance between

them is negative. In each iteration, we try to find C; and C; so as to maximize

log % The iteration continues as long as log% > 0, that is, as long as

there is an improvement in clustering quality. The pseudocode is given in Figure 10.12.

Probabilistic hierarchical clustering methods are easy to understand, and generally
have the same efficiency as algorithmic agglomerative hierarchical clustering methods;
in fact, they share the same framework. Probabilistic models are more interpretable, but
sometimes less flexible than distance metrics. Probabilistic models can handle partially
observed data. For example, given a multidimensional data set where some objects have
missing values on some dimensions, we can learn a Gaussian model on each dimen-
sion independently using the observed values on the dimension. The resulting cluster
hierarchy accomplishes the optimization goal of fitting data to the selected probabilistic
models.

A drawback of using probabilistic hierarchical clustering is that it outputs only one
hierarchy with respect to a chosen probabilistic model. It cannot handle the uncer-
tainty of cluster hierarchies. Given a data set, there may exist multiple hierarchies that

470 Chapter 10 Cluster Analysis: Basic Concepts and Methods

]

L o ® QCZ :

| |

(a)

" '''''''''''''''''''''''''''''
0 o L ¢ |
I 00 L e *
© 0®3 n 8o % i
. 009 0 | e g°%e i
] O O I | ’ . . !
i - [} !
! o Lo o o o
0. ° o il e T |

(b) (c)

Figure 10.11 Merging clusters in probabilistic hierarchical clustering: (a) Merging clusters C; and C, leads
to an increase in overall cluster quality, but merging clusters (b) C; and (c) Cy does not.

Algorithm: A probabilistic hierarchical clustering algorithm.

Input:
D ={oy,...,04}: a data set containing # objects;

Output: A hierarchy of clusters.
Method:

(1) create a cluster for each object C; = {0;}, 1 <i<m;

(2) fori=1ton
P(Cl'UC]‘)

(3) find pair of clusters C; and C; such that C;, C; = argmax ;log WP(CJ-);
) P(CUC;)

(4) if log Wp(éj) > 0 then merge C; and Cj;

(5) else stop;

Figure 10.12 A probabilistic hierarchical clustering algorithm.

fit the observed data. Neither algorithmic approaches nor probabilistic approaches can
find the distribution of such hierarchies. Recently, Bayesian tree-structured models have
been developed to handle such problems. Bayesian and other sophisticated probabilistic
clustering methods are considered advanced topics and are not covered in this book.

10.4 Density-Based Methods 471

Density-Based Methods

Partitioning and hierarchical methods are designed to find spherical-shaped clusters.
They have difficulty finding clusters of arbitrary shape such as the “S” shape and oval
clusters in Figure 10.13. Given such data, they would likely inaccurately identify convex
regions, where noise or outliers are included in the clusters.

To find clusters of arbitrary shape, alternatively, we can model clusters as dense
regions in the data space, separated by sparse regions. This is the main strategy behind
density-based clustering methods, which can discover clusters of nonspherical shape.
In this section, you will learn the basic techniques of density-based clustering by
studying three representative methods, namely, DBSCAN (Section 10.4.1), OPTICS
(Section 10.4.2), and DENCLUE (Section 10.4.3).

[0.4.]| DBSCAN: Density-Based Clustering Based on Connected
Regions with High Density

“How can we find dense regions in density-based clustering?” The density of an object o
can be measured by the number of objects close to 0. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) finds core objects, that is, objects that have dense
neighborhoods. It connects core objects and their neighborhoods to form dense regions
as clusters.

“How does DBSCAN quantify the neighborhood of an object?” A user-specified para-
meter € > 0 is used to specify the radius of a neighborhood we consider for every object.
The e-neighborhood of an object o is the space within a radius € centered at o.

Due to the fixed neighborhood size parameterized by ¢, the density of a neighbor-
hood can be measured simply by the number of objects in the neighborhood. To deter-
mine whether a neighborhood is dense or not, DBSCAN uses another user-specified

Figure 10.13 Clusters of arbitrary shape.

472 Chapter 10 Cluster Analysis: Basic Concepts and Methods

Example 10.7

parameter, MinPts, which specifies the density threshold of dense regions. An object is
a core object if the e-neighborhood of the object contains at least MinPts objects. Core
objects are the pillars of dense regions.

Given a set, D, of objects, we can identify all core objects with respect to the given
parameters, € and MinPts. The clustering task is therein reduced to using core objects
and their neighborhoods to form dense regions, where the dense regions are clusters.
For a core object q and an object p, we say that p is directly density-reachable from q
(with respect to € and MinPts) if p is within the e-neighborhood of q. Clearly, an object
p is directly density-reachable from another object q if and only if q is a core object and
p is in the e-neighborhood of q. Using the directly density-reachable relation, a core
object can “bring” all objects from its e-neighborhood into a dense region.

“How can we assemble a large dense region using small dense regions centered by core
objects?” In DBSCAN, p is density-reachable from q (with respect to € and MinPts in
D) if there is a chain of objects p1,.. ., pu, such that py = q, p, = p, and p; | is directly
density-reachable from p; with respect to € and MinPts, for 1 < i < n, p; € D. Note that
density-reachability is not an equivalence relation because it is not symmetric. If both 0y
and o are core objects and 0y is density-reachable from o0, then o0, is density-reachable
from o;. However, if 05 is a core object but 01 is not, then 0; may be density-reachable
from o0,, but not vice versa.

To connect core objects as well as their neighbors in a dense region, DBSCAN uses
the notion of density-connectedness. Two objects p1,p2 € D are density-connected with
respect to € and MinPts if there is an object q € D such that both p; and p; are density-
reachable from q with respect to € and MinPts. Unlike density-reachability, density-
connectedness is an equivalence relation. It is easy to show that, for objects 03, 02, and
03, if 01 and o0, are density-connected, and 0, and o3 are density-connected, then so are
01 and o3.

Density-reachability and density-connectivity. Consider Figure 10.14 for a given €
represented by the radius of the circles, and, say, let MinPts = 3.

Of the labeled points, m, p, 0, are core objects because each is in an €-neighborhood
containing at least three points. Object q is directly density-reachable from m. Object m
is directly density-reachable from p and vice versa.

Object q is (indirectly) density-reachable from p because q is directly density-
reachable from m and m is directly density-reachable from p. However, p is not density-
reachable from q because g is not a core object. Similarly, r and s are density-reachable
from o0 and o is density-reachable from r. Thus, o, r, and s are all density-connected. =

We can use the closure of density-connectedness to find connected dense regions as
clusters. Each closed set is a density-based cluster. A subset C C D is a cluster if (1)
for any two objects 01,02 € C, 01 and 03 are density-connected; and (2) there does not
exist an object 0 € C and another object o’ € (D — C) such that o and o’ are density-
connected.

10.4 Density-Based Methods 473

Figure 10.14 Density-reachability and density-connectivity in density-based clustering. Source: Based on
Ester, Kriegel, Sander, and Xu [EKSX96].

“How does DBSCAN find clusters?” Initially, all objects in a given data set D are
marked as “unvisited” DBSCAN randomly selects an unvisited object p, marks p as
“visited,” and checks whether the e-neighborhood of p contains at least MinPts objects.
If not, p is marked as a noise point. Otherwise, a new cluster C is created for p, and all
the objects in the e-neighborhood of p are added to a candidate set, N. DBSCAN iter-
atively adds to C those objects in N that do not belong to any cluster. In this process,
for an object p’ in N that carries the label “unvisited,” DBSCAN marks it as “visited” and
checks its e-neighborhood. If the e-neighborhood of p’ has at least MinPts objects, those
objects in the e-neighborhood of p’ are added to N. DBSCAN continues adding objects
to C until C can no longer be expanded, that is, N is empty. At this time, cluster C is
completed, and thus is output.

To find the next cluster, DBSCAN randomly selects an unvisited object from the
remaining ones. The clustering process continues until all objects are visited. The
pseudocode of the DBSCAN algorithm is given in Figure 10.15.

If a spatial index is used, the computational complexity of DBSCAN is O(nlogn),
where 7 is the number of database objects. Otherwise, the complexity is O(r?). With
appropriate settings of the user-defined parameters, ¢ and MinPts, the algorithm is
effective in finding arbitrary-shaped clusters.

10.4.2 OPTICS: Ordering Points to Identify
the Clustering Structure

Although DBSCAN can cluster objects given input parameters such as € (the maxi-
mum radius of a neighborhood) and MinPts (the minimum number of points required
in the neighborhood of a core object), it encumbers users with the responsibility of
selecting parameter values that will lead to the discovery of acceptable clusters. This is
a problem associated with many other clustering algorithms. Such parameter settings

474 Chapter 10 Cluster Analysis: Basic Concepts and Methods

Algorithm: DBSCAN: a density-based clustering algorithm.
Input:

D: a data set containing # objects,
€: the radius parameter, and

MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

(1) mark all objects as unvisited;

(2) do

(3) randomly select an unvisited object p;

(4) mark p as visited;

(5) if the e-neighborhood of p has at least MinPts objects

(6) create a new cluster C, and add p to G;

(7) let N be the set of objects in the €-neighborhood of p;

(8) for each point p’ in N

(9) if p’ is unvisited

(10) mark p’ as visited;

(11) if the e-neighborhood of p’ has at least MinPts points,
add those points to N;

(12) if p’ is not yet a member of any cluster, add p’ to C;

(13) end for

(14) output C;

(15) else mark p as noise;

(16) until no object is unvisited;

Figure 10.15 DBSCAN algorithm.

are usually empirically set and difficult to determine, especially for real-world, high-
dimensional data sets. Most algorithms are sensitive to these parameter values: Slightly
different settings may lead to very different clusterings of the data. Moreover, real-world,
high-dimensional data sets often have very skewed distributions such that their intrin-
sic clustering structure may not be well characterized by a single set of global density
parameters.

Note that density-based clusters are monotonic with respect to the neighborhood
threshold. That is, in DBSCAN, for a fixed MinPts value and two neighborhood thresh-
olds, €1 < €3, a cluster C with respect to €; and MinPts must be a subset of a cluster
C’ with respect to €, and MinPts. This means that if two objects are in a density-based
cluster, they must also be in a cluster with a lower density requirement.

To overcome the difficulty in using one set of global parameters in clustering analy-
sis, a cluster analysis method called OPTICS was proposed. OPTICS does not explicitly
produce a data set clustering. Instead, it outputs a cluster ordering. This is a linear list

10.4 Density-Based Methods 475

of all objects under analysis and represents the density-based clustering structure of the
data. Objects in a denser cluster are listed closer to each other in the cluster ordering.
This ordering is equivalent to density-based clustering obtained from a wide range of
parameter settings. Thus, OPTICS does not require the user to provide a specific density
threshold. The cluster ordering can be used to extract basic clustering information (e.g.,
cluster centers, or arbitrary-shaped clusters), derive the intrinsic clustering structure, as
well as provide a visualization of the clustering.

To construct the different clusterings simultaneously, the objects are processed in a
specific order. This order selects an object that is density-reachable with respect to the
lowest € value so that clusters with higher density (lower €) will be finished first. Based
on this idea, OPTICS needs two important pieces of information per object:

The core-distance of an object p is the smallest value €' such that the
€’-neighborhood of p has at least MinPts objects. That is, €’ is the minimum dis-
tance threshold that makes p a core object. If p is not a core object with respect to €
and MinPts, the core-distance of p is undefined.

The reachability-distance to object p from q is the minimum radius value that makes
p density-reachable from ¢. According to the definition of density-reachability, q
has to be a core object and p must be in the neighborhood of q. Therefore, the
reachability-distance from g to p is max{core-distance(q), dist(p, q)}. If q is not a
core object with respect to € and MinPts, the reachability-distance to p from g is
undefined.

An object p may be directly reachable from multiple core objects. Therefore, p
may have multiple reachability-distances with respect to different core objects. The
smallest reachability-distance of p is of particular interest because it gives the shortest
path for which p is connected to a dense cluster.

Example 10.8 Core-distance and reachability-distance. Figure 10.16 illustrates the concepts of core-
distance and reachability-distance. Suppose that € = 6 mm and MinPts = 5. The core-
distance of p is the distance, €/, between p and the fourth closest data object from p.
The reachability-distance of q; from p is the core-distance of p (i.e., ¢’ = 3mm) because
this is greater than the Euclidean distance from p to q;. The reachability-distance of g
with respect to p is the Euclidean distance from p to g, because this is greater than the
core-distance of p. L]

OPTICS computes an ordering of all objects in a given database and, for each object
in the database, stores the core-distance and a suitable reachability-distance. OPTICS
maintains a list called OrderSeeds to generate the output ordering. Objects in Order-
Seeds are sorted by the reachability-distance from their respective closest core objects,
that is, by the smallest reachability-distance of each object.

OPTICS begins with an arbitrary object from the input database as the current
object, p. It retrieves the e-neighborhood of p, determines the core-distance, and sets
the reachability-distance to undefined. The current object, p, is then written to output.

476

Chapter 10 Cluster Analysis: Basic Concepts and Methods

<)) (&

Core-distance of p Reachability-distance (p, ¢;)=€=3 mm
Reachability-distance (p, q,) =dist (p, q,)

Figure 10.16 OPTICS terminology. Source: Based on Ankerst, Breunig, Kriegel, and Sander [ABKS99].

If p is not a core object, OPTICS simply moves on to the next object in the OrderSeeds
list (or the input database if OrderSeeds is empty). If p is a core object, then for each
object, g, in the e-neighborhood of p, OPTICS updates its reachability-distance from p
and inserts q into OrderSeeds if q has not yet been processed. The iteration continues
until the input is fully consumed and OrderSeeds is empty.

A data set’s cluster ordering can be represented graphically, which helps to visual-
ize and understand the clustering structure in a data set. For example, Figure 10.17 is
the reachability plot for a simple 2-D data set, which presents a general overview of
how the data are structured and clustered. The data objects are plotted in the cluster-
ing order (horizontal axis) together with their respective reachability-distances (vertical
axis). The three Gaussian “bumps” in the plot reflect three clusters in the data set. Meth-
ods have also been developed for viewing clustering structures of high-dimensional data
at various levels of detail.

The structure of the OPTICS algorithm is very similar to that of DBSCAN. Conse-
quently, the two algorithms have the same time complexity. The complexity is O(nlog n)
if a spatial index is used, and O(#?) otherwise, where n is the number of objects.

10.4.3 DENCLUE: Clustering Based on Density

Distribution Functions

Density estimation is a core issue in density-based clustering methods. DENCLUE
(DENsity-based CLUstEring) is a clustering method based on a set of density distribu-
tion functions. We first give some background on density estimation, and then describe
the DENCLUE algorithm.

In probability and statistics, density estimation is the estimation of an unobservable
underlying probability density function based on a set of observed data. In the context
of density-based clustering, the unobservable underlying probability density function
is the true distribution of the population of all possible objects to be analyzed. The
observed data set is regarded as a random sample from that population.

10.4 Density-Based Methods 477

Reachability-distance ° °
3

A

Undefined -

»

Cluster order of objects "

Figure 10.17 Cluster ordering in OPTICS. Source: Adapted from Ankerst, Breunig, Kriegel, and Sander
[ABKS99].

e eTTTTl @ Y

, .

o, N
’ v’ \\ A
1 ’ A A}
1 ’ \ \
;o €1 VN
] .I . 1 1
!

il ' € 1 1
Vo 2 e
\ N ’ 7
\ ‘\ 4 ’

N S e -
 eel__-
AN o .
L@

Figure 10.18 The subtlety in density estimation in DBSCAN and OPTICS: Increasing the neighborhood
radius slightly from €, to €, results in a much higher density.

In DBSCAN and OPTICS, density is calculated by counting the number of objects in
a neighborhood defined by a radius parameter, €. Such density estimates can be highly
sensitive to the radius value used. For example, in Figure 10.18, the density changes
significantly as the radius increases by a small amount.

To overcome this problem, kernel density estimation can be used, which is a
nonparametric density estimation approach from statistics. The general idea behind
kernel density estimation is simple. We treat an observed object as an indicator of

478

Chapter 10 Cluster Analysis: Basic Concepts and Methods

high-probability density in the surrounding region. The probability density at a point
depends on the distances from this point to the observed objects.

Formally, let xj,...,x, be an independent and identically distributed sample of a
random variable f. The kernel density approximation of the probability density function is
i) = — ZH:K . (10.21)
x)=— , .
MY h

where K() is a kernel and F is the bandwidth serving as a smoothing parameter. A ker-
nel can be regarded as a function modeling the influence of a sample point within its
neighborhood. Technically, a kernel K() is a non-negative real-valued integrable func-
tion that should satisfy two requirements: fjoooo K(u)du=1 and K(—u) = K(u) for all
values of u. A frequently used kernel is a standard Gaussian function with a mean of 0
and a variance of 1:

X — X 1 _&x—=xp?
K(’): e . (10.22)

h 27

DENCLUE uses a Gaussian kernel to estimate density based on the given set of objects
to be clustered. A point x* is called a density attractor if it is a local maximum of the
estimated density function. To avoid trivial local maximum points, DENCLUE uses a
noise threshold, &, and only considers those density attractors x* such that f(x*) >£.
These nontrivial density attractors are the centers of clusters.

Objects under analysis are assigned to clusters through density attractors using a step-
wise hill-climbing procedure. For an object, x, the hill-climbing procedure starts from
x and is guided by the gradient of the estimated density function. That is, the density
attractor for x is computed as

x° =X
. . Vi
oA =x1+8{—(x.), (10.23)
V()]

where § is a parameter to control the speed of convergence, and
1

Vf(x) = .
hit2ny ol K (x - x,-) (xi —x)

(10.24)

The hill-climbing procedure stops at step k > 0 if f(xk+1) < f(xk), and assigns x to the
density attractor x* = xX. An object x is an outlier or noise if it converges in the hill-
climbing procedure to a local maximum x* with jAf (x*) <&.

A cluster in DENCLUE is a set of density attractors X and a set of input objects C
such that each object in C is assigned to a density attractor in X, and there exists a path
between every pair of density attractors where the density is above &. By using multiple
density attractors connected by paths, DENCLUE can find clusters of arbitrary shape.

10.5.1

10.5 Grid-Based Methods 479

DENCLUE has several advantages. It can be regarded as a generalization of several
well-known clustering methods such as single-linkage approaches and DBSCAN. More-
over, DENCLUE is invariant against noise. The kernel density estimation can effectively
reduce the influence of noise by uniformly distributing noise into the input data.

Grid-Based Methods

The clustering methods discussed so far are data-driven—they partition the set of
objects and adapt to the distribution of the objects in the embedding space. Alterna-
tively, a grid-based clustering method takes a space-driven approach by partitioning
the embedding space into cells independent of the distribution of the input objects.

The grid-based clustering approach uses a multiresolution grid data structure. It
quantizes the object space into a finite number of cells that form a grid structure on
which all of the operations for clustering are performed. The main advantage of the
approach is its fast processing time, which is typically independent of the number of data
objects, yet dependent on only the number of cells in each dimension in the quantized
space.

In this section, we illustrate grid-based clustering using two typical examples. STING
(Section 10.5.1) explores statistical information stored in the grid cells. CLIQUE
(Section 10.5.2) represents a grid- and density-based approach for subspace clustering
in a high-dimensional data space.

STING: STatistical INformation Grid

STING is a grid-based multiresolution clustering technique in which the embedding
spatial area of the input objects is divided into rectangular cells. The space can be divided
in a hierarchical and recursive way. Several levels of such rectangular cells correspond to
different levels of resolution and form a hierarchical structure: Each cell at a high level
is partitioned to form a number of cells at the next lower level. Statistical information
regarding the attributes in each grid cell, such as the mean, maximum, and minimum
values, is precomputed and stored as statistical parameters. These statistical parameters
are useful for query processing and for other data analysis tasks.

Figure 10.19 shows a hierarchical structure for STING clustering. The statistical
parameters of higher-level cells can easily be computed from the parameters of the
lower-level cells. These parameters include the following: the attribute-independent
parameter, count; and the attribute-dependent parameters, mean, stdev (standard devia-
tion), min (minimum), max (maximum), and the type of distribution that the attribute
value in the cell follows such as normal, uniform, exponential, or none (if the distribu-
tion is unknown). Here, the attribute is a selected measure for analysis such as price for
house objects. When the data are loaded into the database, the parameters count, mean,
stdev, min, and max of the bottom-level cells are calculated directly from the data. The
value of distribution may either be assigned by the user if the distribution type is known

480 Chapter 10 Cluster Analysis: Basic Concepts and Methods

First layer

/

Z

Figure 10.19 Hierarchical structure for STING clustering.

beforehand or obtained by hypothesis tests such as the x? test. The type of distribution
of a higher-level cell can be computed based on the majority of distribution types of its
corresponding lower-level cells in conjunction with a threshold filtering process. If the
distributions of the lower-level cells disagree with each other and fail the threshold test,
the distribution type of the high-level cell is set to none.

“How is this statistical information useful for query answering?” The statistical para-
meters can be used in a top-down, grid-based manner as follows. First, a layer within the
hierarchical structure is determined from which the query-answering process is to start.
This layer typically contains a small number of cells. For each cell in the current layer,
we compute the confidence interval (or estimated probability range) reflecting the cell’s
relevancy to the given query. The irrelevant cells are removed from further considera-
tion. Processing of the next lower level examines only the remaining relevant cells. This
process is repeated until the bottom layer is reached. At this time, if the query specifica-
tion is met, the regions of relevant cells that satisfy the query are returned. Otherwise,
the data that fall into the relevant cells are retrieved and further processed until they
meet the query’s requirements.

An interesting property of STING is that it approaches the clustering result of
DBSCAN if the granularity approaches 0 (i.e., toward very low-level data). In other
words, using the count and cell size information, dense clusters can be identified
approximately using STING. Therefore, STING can also be regarded as a density-based
clustering method.

“What advantages does STING offer over other clustering methods?” STING offers
several advantages: (1) the grid-based computation is query-independent because the
statistical information stored in each cell represents the summary information of the
data in the grid cell, independent of the query; (2) the grid structure facilitates parallel
processing and incremental updating; and (3) the method’s efficiency is a major advan-
tage: STING goes through the database once to compute the statistical parameters of the
cells, and hence the time complexity of generating clusters is O(n), where 7 is the total
number of objects. After generating the hierarchical structure, the query processing time

10.5 Grid-Based Methods 481

is O(g), where g is the total number of grid cells at the lowest level, which is usually much
smaller than n.

Because STING uses a multiresolution approach to cluster analysis, the quality of
STING clustering depends on the granularity of the lowest level of the grid structure. If
the granularity is very fine, the cost of processing will increase substantially; however, if
the bottom level of the grid structure is too coarse, it may reduce the quality of cluster
analysis. Moreover, STING does not consider the spatial relationship between the child-
ren and their neighboring cells for construction of a parent cell. As a result, the shapes
of the resulting clusters are isothetic, that is, all the cluster boundaries are either hori-
zontal or vertical, and no diagonal boundary is detected. This may lower the quality and
accuracy of the clusters despite the fast processing time of the technique.

[0.5.2 CLIQUE: An Apriori-like Subspace Clustering Method

A data object often has tens of attributes, many of which may be irrelevant. The val-
ues of attributes may vary considerably. These factors can make it difficult to locate
clusters that span the entire data space. It may be more meaningful to instead search
for clusters within different subspaces of the data. For example, consider a health-
informatics application where patient records contain extensive attributes describing
personal information, numerous symptoms, conditions, and family history.

Finding a nontrivial group of patients for which all or even most of the attributes
strongly agree is unlikely. In bird flu patients, for instance, the age, gender, and job
attributes may vary dramatically within a wide range of values. Thus, it can be difficult
to find such a cluster within the entire data space. Instead, by searching in subspaces, we
may find a cluster of similar patients in a lower-dimensional space (e.g., patients who
are similar to one other with respect to symptoms like high fever, cough but no runny
nose, and aged between 3 and 16).

CLIQUE (CLustering In QUEst) is a simple grid-based method for finding density-
based clusters in subspaces. CLIQUE partitions each dimension into nonoverlapping
intervals, thereby partitioning the entire embedding space of the data objects into cells.
It uses a density threshold to identify dense cells and sparse ones. A cell is dense if the
number of objects mapped to it exceeds the density threshold.

The main strategy behind CLIQUE for identifying a candidate search space uses the
monotonicity of dense cells with respect to dimensionality. This is based on the Apriori
property used in frequent pattern and association rule mining (Chapter 6). In the con-
text of clusters in subspaces, the monotonicity says the following. A k-dimensional cell ¢
(k > 1) can have at least [points only if every (k — 1)-dimensional projection of ¢, which
is a cell in a (k — 1)-dimensional subspace, has at least ! points. Consider Figure 10.20,
where the embedding data space contains three dimensions: age, salary, and vacation.
A 2-D cell, say in the subspace formed by age and salary, contains I points only if the
projection of this cell in every dimension, that is, age and salary, respectively, contains
at least [points.

CLIQUE performs clustering in two steps. In the first step, CLIQUE partitions
the d-dimensional data space into nonoverlapping rectangular units, identifying the
dense units among these. CLIQUE finds dense cells in all of the subspaces. To do so,

482 Chapter 10 Cluster Analysis: Basic Concepts and Methods

°
7 (] LI RN) °
°
6 = o o o o
=
Zaptt o
. ° °
§ 3 ° o © °
S °
) o °
1
0
20 30 40 50 60 age
7
6
= °
§ 5 ® ®
;’ 4 °) °
S [.| ®
g 3 o o | o®
S e °
o |o ° °
) o | e
° ° o
°
| °
0 °
20 30 40 50 60 age
=
S
3
S
30 50 age

Figure 10.20 Dense units found with respect to age for the dimensions salary and vacation are intersected
to provide a candidate search space for dense units of higher dimensionality.

10.6 Evaluation of Clustering 483

CLIQUE partitions every dimension into intervals, and identifies intervals containing
at least [points, where [is the density threshold. CLIQUE then iteratively joins two
k-dimensional dense cells, ¢ and ¢, in subspaces (Dj,...,D;) and (Dj» ... Dj),
respectively, if D; = Dj,..., Dj_, =Dj_,, and ¢ and ¢, share the same intervals in
those dimensions. The join operation generates a new (k + 1)-dimensional candidate
cell ¢ in space (Dj,;...,D;,_,,Dj,Dj). CLIQUE checks whether the number of points
in ¢ passes the density threshold. The iteration terminates when no candidates can be
generated or no candidate cells are dense.

In the second step, CLIQUE uses the dense cells in each subspace to assemble clusters,
which can be of arbitrary shape. The idea is to apply the Minimum Description Length
(MDL) principle (Chapter 8) to use the maximal regions to cover connected dense cells,
where a maximal region is a hyperrectangle where every cell falling into this region is
dense, and the region cannot be extended further in any dimension in the subspace.
Finding the best description of a cluster in general is NP-Hard. Thus, CLIQUE adopts
a simple greedy approach. It starts with an arbitrary dense cell, finds a maximal region
covering the cell, and then works on the remaining dense cells that have not yet been
covered. The greedy method terminates when all dense cells are covered.

“How effective is CLIQUE?” CLIQUE automatically finds subspaces of the highest
dimensionality such that high-density clusters exist in those subspaces. It is insensitive
to the order of input objects and does not presume any canonical data distribution. It
scales linearly with the size of the input and has good scalability as the number of dimen-
sions in the data is increased. However, obtaining a meaningful clustering is dependent
on proper tuning of the grid size (which is a stable structure here) and the density
threshold. This can be difficult in practice because the grid size and density threshold
are used across all combinations of dimensions in the data set. Thus, the accuracy of the
clustering results may be degraded at the expense of the method’s simplicity. Moreover,
for a given dense region, all projections of the region onto lower-dimensionality sub-
spaces will also be dense. This can result in a large overlap among the reported dense
regions. Furthermore, it is difficult to find clusters of rather different densities within
different dimensional subspaces.

Several extensions to this approach follow a similar philosophy. For example, we can
think of a grid as a set of fixed bins. Instead of using fixed bins for each of the dimensions,
we can use an adaptive, data-driven strategy to dynamically determine the bins for each
dimension based on data distribution statistics. Alternatively, instead of using a den-
sity threshold, we may use entropy (Chapter 8) as a measure of the quality of subspace
clusters.

Evaluation of Clustering

By now you have learned what clustering is and know several popular clustering meth-
ods. You may ask, “When I try out a clustering method on a data set, how can I
evaluate whether the clustering results are good?” In general, cluster evaluation assesses

484 Chapter 10 Cluster Analysis: Basic Concepts and Methods

the feasibility of clustering analysis on a data set and the quality of the results generated
by a clustering method. The major tasks of clustering evaluation include the following:

Assessing clustering tendency. In this task, for a given data set, we assess whether a
nonrandom structure exists in the data. Blindly applying a clustering method on a
data set will return clusters; however, the clusters mined may be misleading. Cluster-
ing analysis on a data set is meaningful only when there is a nonrandom structure in
the data.

Determining the number of clusters in a data set. A few algorithms, such as k-means,
require the number of clusters in a data set as the parameter. Moreover, the number
of clusters can be regarded as an interesting and important summary statistic of a
data set. Therefore, it is desirable to estimate this number even before a clustering
algorithm is used to derive detailed clusters.

Measuring clustering quality. After applying a clustering method on a data set, we
want to assess how good the resulting clusters are. A number of measures can be used.
Some methods measure how well the clusters fit the data set, while others measure
how well the clusters match the ground truth, if such truth is available. There are also
measures that score clusterings and thus can compare two sets of clustering results
on the same data set.

In the rest of this section, we discuss each of these three topics.

10.6.] Assessing Clustering Tendency

Example 10.9

Clustering tendency assessment determines whether a given data set has a non-random
structure, which may lead to meaningful clusters. Consider a data set that does not have
any non-random structure, such as a set of uniformly distributed points in a data space.
Even though a clustering algorithm may return clusters for the data, those clusters are
random and are not meaningful.

Clustering requires nonuniform distribution of data. Figure 10.21 shows a data set
that is uniformly distributed in 2-D data space. Although a clustering algorithm may
still artificially partition the points into groups, the groups will unlikely mean anything
significant to the application due to the uniform distribution of the data. (]

“How can we assess the clustering tendency of a data set?” Intuitively, we can try to
measure the probability that the data set is generated by a uniform data distribution.
This can be achieved using statistical tests for spatial randomness. To illustrate this idea,
let’s look at a simple yet effective statistic called the Hopkins Statistic.

The Hopkins Statistic is a spatial statistic that tests the spatial randomness of a vari-
able as distributed in a space. Given a data set, D, which is regarded as a sample of

10.6 Evaluation of Clustering 485

Figure 10.21 A data set that is uniformly distributed in the data space.

a random variable, o, we want to determine how far away o is from being uniformly
distributed in the data space. We calculate the Hopkins Statistic as follows:

Sample n points, pi, ..., Pu, uniformly from D. That is, each point in D has the same
probability of being included in this sample. For each point, p;, we find the nearest
neighbor of p; (1 < i < n) in D, and let x; be the distance between p; and its nearest
neighbor in D. That is,

; = min{dist(p;,v)}. 10.2
Xi rvrlelg{ ist(pi,v)} (10.25)
. Sample n points, qi, ..., gu, uniformly from D. For each q; (1 < i < n), we find the

nearest neighbor of g; in D — {g;}, and let y; be the distance between ¢; and its nearest
neighbor in D —{g;}. That is,

yi= végg;éqi{dlst(qi,V)}. (10.26)

. Calculate the Hopkins Statistic, H, as

Z?:U’i
i xi+ Dy

“What does the Hopkins Statistic tell us about how likely data set D follows a uni-

H=

(10.27)

form distribution in the data space?” If D were uniformly distributed, then)", y; and
Z?:l x; would be close to each other, and thus H would be about 0.5. However, if D were
highly skewed, then Y7, y; would be substantially smaller than)", x; in expectation,
and thus H would be close to 0.

486

Chapter 10 Cluster Analysis: Basic Concepts and Methods

Our null hypothesis is the homogeneous hypothesis—that D is uniformly distributed
and thus contains no meaningful clusters. The nonhomogeneous hypothesis (i.e., that D
is not uniformly distributed and thus contains clusters) is the alternative hypothesis.
We can conduct the Hopkins Statistic test iteratively, using 0.5 as the threshold to reject
the alternative hypothesis. That is, if H > 0.5, then it is unlikely that D has statistically
significant clusters.

10.6.2 Determining the Number of Clusters

Determining the “right” number of clusters in a data set is important, not only because
some clustering algorithms like k-means require such a parameter, but also because the
appropriate number of clusters controls the proper granularity of cluster analysis. It can
be regarded as finding a good balance between compressibility and accuracy in cluster
analysis. Consider two extreme cases. What if you were to treat the entire data set as a
cluster? This would maximize the compression of the data, but such a cluster analysis
has no value. On the other hand, treating each object in a data set as a cluster gives
the finest clustering resolution (i.e., most accurate due to the zero distance between an
object and the corresponding cluster center). In some methods like k-means, this even
achieves the best cost. However, having one object per cluster does not enable any data
summarization.

Determining the number of clusters is far from easy, often because the “right” num-
ber is ambiguous. Figuring out what the right number of clusters should be often
depends on the distribution’s shape and scale in the data set, as well as the cluster-
ing resolution required by the user. There are many possible ways to estimate the
number of clusters. Here, we briefly introduce a few simple yet popular and effective
methods.

A simple method is to set the number of clusters to about \/g for a data set of n

points. In expectation, each cluster has /27 points.

The elbow method is based on the observation that increasing the number of clusters
can help to reduce the sum of within-cluster variance of each cluster. This is because
having more clusters allows one to capture finer groups of data objects that are more
similar to each other. However, the marginal effect of reducing the sum of within-cluster
variances may drop if too many clusters are formed, because splitting a cohesive cluster
into two gives only a small reduction. Consequently, a heuristic for selecting the right
number of clusters is to use the turning point in the curve of the sum of within-cluster
variances with respect to the number of clusters.

Technically, given a number, k > 0, we can form k clusters on the data set in ques-
tion using a clustering algorithm like k-means, and calculate the sum of within-cluster
variances, var(k). We can then plot the curve of var with respect to k. The first (or most
significant) turning point of the curve suggests the “right” number.

More advanced methods can determine the number of clusters using information
criteria or information theoretic approaches. Please refer to the bibliographic notes for
further information (Section 10.9).

10.6.3

10.6 Evaluation of Clustering 487

The “right” number of clusters in a data set can also be determined by cross-
validation, a technique often used in classification (Chapter 8). First, divide the given
data set, D, into m parts. Next, use m — 1 parts to build a clustering model, and use
the remaining part to test the quality of the clustering. For example, for each point in
the test set, we can find the closest centroid. Consequently, we can use the sum of the
squared distances between all points in the test set and the closest centroids to measure
how well the clustering model fits the test set. For any integer k > 0, we repeat this pro-
cess m times to derive clusterings of k clusters by using each part in turn as the test set.
The average of the quality measure is taken as the overall quality measure. We can then
compare the overall quality measure with respect to different values of k, and find the
number of clusters that best fits the data.

Measuring Clustering Quality

Suppose you have assessed the clustering tendency of a given data set. You may have
also tried to predetermine the number of clusters in the set. You can now apply one
or multiple clustering methods to obtain clusterings of the data set. “How good is the
clustering generated by a method, and how can we compare the clusterings generated by
different methods?”

We have a few methods to choose from for measuring the quality of a clustering.
In general, these methods can be categorized into two groups according to whether
ground truth is available. Here, ground truth is the ideal clustering that is often built
using human experts.

If ground truth is available, it can be used by extrinsic methods, which compare the
clustering against the group truth and measure. If the ground truth is unavailable, we
can use intrinsic methods, which evaluate the goodness of a clustering by considering
how well the clusters are separated. Ground truth can be considered as supervision in the
form of “cluster labels.” Hence, extrinsic methods are also known as supervised methods,
while intrinsic methods are unsupervised methods.

Let’s have a look at simple methods from each category.

Extrinsic Methods

When the ground truth is available, we can compare it with a clustering to assess the
clustering. Thus, the core task in extrinsic methods is to assign a score, Q(C,Cg), to
a clustering, C, given the ground truth, Cg. Whether an extrinsic method is effective
largely depends on the measure, Q, it uses.

In general, a measure Q on clustering quality is effective if it satisfies the following
four essential criteria:

Cluster homogeneity. This requires that the more pure the clusters in a clustering
are, the better the clustering. Suppose that ground truth says that the objects in
a data set, D, can belong to categories Li,...,L,. Consider clustering, C;, wherein
a cluster C € C; contains objects from two categories L;, Lj (1 <i<j=<n). Also

488

Chapter 10 Cluster Analysis: Basic Concepts and Methods

consider clustering C,, which is identical to C; except that C; is split into two clusters
containing the objects in L; and Lj, respectively. A clustering quality measure, Q,
respecting cluster homogeneity should give a higher score to C, than C;, that is,

Q(CZ>Cg) > Q(Cl)cg)~

Cluster completeness. This is the counterpart of cluster homogeneity. Cluster com-
pleteness requires that for a clustering, if any two objects belong to the same category
according to ground truth, then they should be assigned to the same cluster. Cluster
completeness requires that a clustering should assign objects belonging to the same
category (according to ground truth) to the same cluster. Consider clustering Ci,
which contains clusters C; and GC,, of which the members belong to the same category
according to ground truth. Let clustering C, be identical to C; except that C; and C,
are merged into one cluster in C,. Then, a clustering quality measure, Q, respecting
cluster completeness should give a higher score to Cs, that is, Q(C>,C¢) > Q(C1,Cy).

Rag bag. In many practical scenarios, there is often a “rag bag” category contain-
ing objects that cannot be merged with other objects. Such a category is often called
“miscellaneous,” “other,” and so on. The rag bag criterion states that putting a het-
erogeneous object into a pure cluster should be penalized more than putting it into
a rag bag. Consider a clustering C; and a cluster C € C; such that all objects in C
except for one, denoted by o, belong to the same category according to ground truth.
Consider a clustering C, identical to C; except that o is assigned to a cluster C' # Cin
C; such that C’ contains objects from various categories according to ground truth,
and thus is noisy. In other words, C' in C; is a rag bag. Then, a clustering quality
measure Q respecting the rag bag criterion should give a higher score to C,, that is,

Q(CZ)Cg) > Q(Cl,Cg).

Small cluster preservation. If a small category is split into small pieces in a cluster-
ing, those small pieces may likely become noise and thus the small category cannot
be discovered from the clustering. The small cluster preservation criterion states that
splitting a small category into pieces is more harmful than splitting a large category
into pieces. Consider an extreme case. Let D be a data set of n+ 2 objects such that,
according to ground truth, #n objects, denoted by oy, ..., 0,4, belong to one cate-
gory and the other two objects, denoted by 04+1,04+2, belong to another cate-
gory. Suppose clustering C; has three clusters, C; ={o1,..., 04}, C2 ={04+1}, and
Cs ={0n+2}. Let clustering C, have three clusters, too, namely C; ={o1,..., 0n—1},
Cy ={0y4}, and C3 ={04+1,04+2}. In other words, C; splits the small category and
G, splits the big category. A clustering quality measure Q preserving small clusters
should give a higher score to C3, that is, Q(C2,C¢) > Q(C1,Cy).

Many clustering quality measures satisfy some of these four criteria. Here, we introduce
the BCubed precision and recall metrics, which satisfy all four criteria.

BCubed evaluates the precision and recall for every object in a clustering on a given
data set according to ground truth. The precision of an object indicates how many
other objects in the same cluster belong to the same category as the object. The recall

10.6 Evaluation of Clustering 489

of an object reflects how many objects of the same category are assigned to the same
cluster.

Formally, let D={oy, ..., 0n} be a set of objects, and C be a clustering on D. Let L(0;)
(1 < i< n) be the category of o; given by ground truth, and C(o;) be the cluster_ID of o;
in C. Then, for two objects, 0; and 0j, 1 <i,j,<mi##j), the correctness of the relation
between o; and oj in clustering C is given by

1 if L(o;) = L(oj) < C(0;) = C(0))

Correctness(0;,0;) = 10.28
(03,0) 0 otherwise. ()
BCubed precision is defined as
Z Correctness(0;, 0j)
2 0j:i#),C(0;)=C(0))
~ " I{ojli #j,Coi) = C(op}
Precision BCubed = — (10.29)
n
BCubed recall is defined as
Z Correctness(0;, 05)
X”: 0j:i#),L(0)=L(0j)
£ ojli# j, (o) = Loy
Recall BCubed = — (10.30)

n

Intrinsic Methods

When the ground truth of a data set is not available, we have to use an intrinsic method
to assess the clustering quality. In general, intrinsic methods evaluate a clustering by
examining how well the clusters are separated and how compact the clusters are. Many
intrinsic methods have the advantage of a similarity metric between objects in the
data set.

The silhouette coefficient is such a measure. For a data set, D, of n objects, suppose
D is partitioned into k clusters, Ci,..., Cy. For each object o € D, we calculate a(o) as
the average distance between o and all other objects in the cluster to which o belongs.
Similarly, b(0) is the minimum average distance from o to all clusters to which o does
not belong. Formally, suppose o0 € C; (1 < i < k); then

Zo'ec,-,o;éo’ dist(0,0")
ICil—1

a(0) = (10.31)

490 Chapter 10 Cluster Analysis: Basic Concepts and Methods

and
> . dist(o,0")
b(o) = min Zoes 7 (10.32)
Cil<j<k,j#i |Gl
The silhouette coefficient of o is then defined as
b(o) —
§(0) = 20— al0) (10.33)

" max{a(o),b(0)}’

The value of the silhouette coefficient is between —1 and 1. The value of a(o) reflects
the compactness of the cluster to which o belongs. The smaller the value, the more com-
pact the cluster. The value of b(0) captures the degree to which o is separated from other
clusters. The larger b(o) is, the more separated o is from other clusters. Therefore, when
the silhouette coefficient value of o approaches 1, the cluster containing o is compact
and o is far away from other clusters, which is the preferable case. However, when the
silhouette coefficient value is negative (i.e., b(0) < a(0)), this means that, in expectation,
o is closer to the objects in another cluster than to the objects in the same cluster as o.
In many cases, this is a bad situation and should be avoided.

To measure a cluster’s fitness within a clustering, we can compute the average silhou-
ette coefficient value of all objects in the cluster. To measure the quality of a clustering,
we can use the average silhouette coefficient value of all objects in the data set. The sil-
houette coefficient and other intrinsic measures can also be used in the elbow method
to heuristically derive the number of clusters in a data set by replacing the sum of
within-cluster variances.

Summary

A cluster is a collection of data objects that are similar to one another within the same
cluster and are dissimilar to the objects in other clusters. The process of grouping a
set of physical or abstract objects into classes of similar objects is called clustering.

Cluster analysis has extensive applications, including business intelligence, image
pattern recognition, Web search, biology, and security. Cluster analysis can be used
as a standalone data mining tool to gain insight into the data distribution, or as
a preprocessing step for other data mining algorithms operating on the detected
clusters.

Clustering is a dynamic field of research in data mining. It is related to unsupervised
learning in machine learning.

Clustering is a challenging field. Typical requirements of it include scalability, the
ability to deal with different types of data and attributes, the discovery of clus-
ters in arbitrary shape, minimal requirements for domain knowledge to determine
input parameters, the ability to deal with noisy data, incremental clustering and

10.8 Exercises 491

insensitivity to input order, the capability of clustering high-dimensionality data,
constraint-based clustering, as well as interpretability and usability.

Many clustering algorithms have been developed. These can be categorized from
several orthogonal aspects such as those regarding partitioning criteria, separation
of clusters, similarity measures used, and clustering space. This chapter discusses
major fundamental clustering methods of the following categories: partitioning
methods, hierarchical methods, density-based methods, and grid-based methods. Some
algorithms may belong to more than one category.

A partitioning method first creates an initial set of k partitions, where parame-
ter k is the number of partitions to construct. It then uses an iterative relocation
technique that attempts to improve the partitioning by moving objects from one
group to another. Typical partitioning methods include k-means, k-medoids, and
CLARANS.

A hierarchical method creates a hierarchical decomposition of the given set of data
objects. The method can be classified as being either agglomerative (bottom-up) or
divisive (top-down), based on how the hierarchical decomposition is formed. To
compensate for the rigidity of merge or split, the quality of hierarchical agglome-
ration can be improved by analyzing object linkages at each hierarchical partitioning
(e.g., in Chameleon), or by first performing microclustering (that is, grouping objects
into “microclusters”) and then operating on the microclusters with other clustering
techniques such as iterative relocation (as in BIRCH).

A density-based method clusters objects based on the notion of density. It grows
clusters either according to the density of neighborhood objects (e.g., in DBSCAN)
or according to a density function (e.g., in DENCLUE). OPTICS is a density-based
method that generates an augmented ordering of the data’s clustering structure.

A grid-based method first quantizes the object space into a finite number of cells that
form a grid structure, and then performs clustering on the grid structure. STING is
a typical example of a grid-based method based on statistical information stored in
grid cells. CLIQUE is a grid-based and subspace clustering algorithm.

Clustering evaluation assesses the feasibility of clustering analysis on a data set and
the quality of the results generated by a clustering method. The tasks include assessing
clustering tendency, determining the number of clusters, and measuring clustering
quality.

Exercises

10.1 Briefly describe and give examples of each of the following approaches to cluster-
ing: partitioning methods, hierarchical methods, density-based methods, and grid-based
methods.

492

Chapter 10 Cluster Analysis: Basic Concepts and Methods

10.2

10.3

10.4

10.5
10.6

10.7
10.8

10.9
10.10

10.11

Suppose that the data mining task is to cluster points (with (x, y) representing location)
into three clusters, where the points are

Al (2) 10))A2(2) 5))A3(8)4))B1 (5)8))B2(775)7B3(6)4)) Cl(l)z)’ C2(4)9)

The distance function is Euclidean distance. Suppose initially we assign A;, B, and C;
as the center of each cluster, respectively. Use the k-means algorithm to show only

(a) The three cluster centers after the first round of execution.
(b) The final three clusters.

Use an example to show why the k-means algorithm may not find the global optimum,
that is, optimizing the within-cluster variation.

For the k-means algorithm, it is interesting to note that by choosing the initial cluster
centers carefully, we may be able to not only speed up the algorithm’s convergence, but
also guarantee the quality of the final clustering. The k-means++ algorithm is a vari-
ant of k-means, which chooses the initial centers as follows. First, it selects one center
uniformly at random from the objects in the data set. Iteratively, for each object p other
than the chosen center, it chooses an object as the new center. This object is chosen at
random with probability proportional to dist(p)?, where dist(p) is the distance from p
to the closest center that has already been chosen. The iteration continues until k centers
are selected.

Explain why this method will not only speed up the convergence of the k-means
algorithm, but also guarantee the quality of the final clustering results.

Provide the pseudocode of the object reassignment step of the PAM algorithm.
Both k-means and k-medoids algorithms can perform effective clustering.

(a) Ilustrate the strength and weakness of k-means in comparison with k-medoids.

(b) Mlustrate the strength and weakness of these schemes in comparison with a hierar-
chical clustering scheme (e.g., AGNES).

Prove that in DBSCAN, the density-connectedness is an equivalence relation.

Prove that in DBSCAN, for a fixed MinPts value and two neighborhood thresholds,
€1 < €, a cluster C with respect to €; and MinPts must be a subset of a cluster C" with
respect to € and MinPts.

Provide the pseudocode of the OPTICS algorithm.

Why is it that BIRCH encounters difficulties in finding clusters of arbitrary shape but
OPTICS does not? Propose modifications to BIRCH to help it find clusters of arbitrary
shape.

Provide the pseudocode of the step in CLIQUE that finds dense cells in all subspaces.

10.12

10.13

10.14

10.15

10.16

10.17

10.18

10.19

10.8 Exercises 493

Present conditions under which density-based clustering is more suitable than
partitioning-based clustering and hierarchical clustering. Give application examples to
support your argument.

Give an example of how specific clustering methods can be integrated, for example,
where one clustering algorithm is used as a preprocessing step for another. In addi-
tion, provide reasoning as to why the integration of two methods may sometimes lead
to improved clustering quality and efficiency.

Clustering is recognized as an important data mining task with broad applications. Give
one application example for each of the following cases:

(a) An application that uses clustering as a major data mining function.

(b) An application that uses clustering as a preprocessing tool for data preparation for
other data mining tasks.

Data cubes and multidimensional databases contain nominal, ordinal, and numeric data
in hierarchical or aggregate forms. Based on what you have learned about the clustering
methods, design a clustering method that finds clusters in large data cubes effectively
and efficiently.

Describe each of the following clustering algorithms in terms of the following crite-
ria: (1) shapes of clusters that can be determined; (2) input parameters that must be
specified; and (3) limitations.

(a) k-means

(b) k-medoids

(c) CLARA

(d) BIRCH

(e) CHAMELEON
(f) DBSCAN

Human eyes are fast and effective at judging the quality of clustering methods for
2-D data. Can you design a data visualization method that may help humans visua-
lize data clusters and judge the clustering quality for 3-D data? What about for even
higher-dimensional data?

Suppose that you are to allocate a number of automatic teller machines (ATMs) in a
given region so as to satisfy a number of constraints. Households or workplaces may
be clustered so that typically one ATM is assigned per cluster. The clustering, however,
may be constrained by two factors: (1) obstacle objects (i.e., there are bridges, rivers, and
highways that can affect ATM accessibility), and (2) additional user-specified constraints
such as that each ATM should serve at least 10,000 households. How can a clustering
algorithm such as k-means be modified for quality clustering under both constraints?

For constraint-based clustering, aside from having the minimum number of customers
in each cluster (for ATM allocation) as a constraint, there can be many other kinds of

494 Chapter 10 Cluster Analysis: Basic Concepts and Methods

10.20

10.21

constraints. For example, a constraint could be in the form of the maximum number
of customers per cluster, average income of customers per cluster, maximum distance
between every two clusters, and so on. Categorize the kinds of constraints that can
be imposed on the clusters produced and discuss how to perform clustering efficiently
under such kinds of constraints.

Design a privacy-preserving clustering method so that a data owner would be able to ask a
third party to mine the data for quality clustering without worrying about the potential
inappropriate disclosure of certain private or sensitive information stored in the data.

Show that BCubed metrics satisfy the four essential requirements for extrinsic clustering
evaluation methods.

Bibliographic Notes

Clustering has been extensively studied for over 40 years and across many disciplines
due to its broad applications. Most books on pattern classification and machine learn-
ing contain chapters on cluster analysis or unsupervised learning. Several textbooks are
dedicated to the methods of cluster analysis, including Hartigan [Har75]; Jain and
Dubes [JD88]; Kaufman and Rousseeuw [KR90]; and Arabie, Hubert, and De Sorte
[AHS96]. There are also many survey articles on different aspects of clustering methods.
Recent ones include Jain, Murty, and Flynn [JMF99]; Parsons, Haque, and Liu [PHL04];
and Jain [JailO0].

For partitioning methods, the k-means algorithm was first introduced by Lloyd
[Llo57], and then by MacQueen [Mac67]. Arthur and Vassilvitskii [AV07] presented
the k-means++ algorithm. A filtering algorithm, which uses a spatial hierarchical data
index to speed up the computation of cluster means, is given in Kanungo, Mount,
Netanyahu, et al. [KMN102].

The k-medoids algorithms of PAM and CLARA were proposed by Kaufman and
Rousseeuw [KR90]. The k-modes (for clustering nominal data) and k-prototypes (for
clustering hybrid data) algorithms were proposed by Huang [Hua98]. The k-modes clus-
tering algorithm was also proposed independently by Chaturvedi, Green, and Carroll
[CGCY4, CGCO1]. The CLARANS algorithm was proposed by Ng and Han [NH94].
Ester, Kriegel, and Xu [EKX95] proposed techniques for further improvement of the
performance of CLARANS using efficient spatial access methods such as Rx-tree and
focusing techniques. A k-means-based scalable clustering algorithm was proposed by
Bradley, Fayyad, and Reina [BFR98].

An early survey of agglomerative hierarchical clustering algorithms was conducted by
Day and Edelsbrunner [DE84]. Agglomerative hierarchical clustering, such as AGNES,
and divisive hierarchical clustering, such as DIANA, were introduced by Kaufman and
Rousseeuw [KR90]. An interesting direction for improving the clustering quality of hier-
archical clustering methods is to integrate hierarchical clustering with distance-based
iterative relocation or other nonhierarchical clustering methods. For example, BIRCH,
by Zhang, Ramakrishnan, and Livny [ZRL96], first performs hierarchical clustering with

10.9 Bibliographic Notes 495

a CF-tree before applying other techniques. Hierarchical clustering can also be per-
formed by sophisticated linkage analysis, transformation, or nearest-neighbor analysis,
such as CURE by Guha, Rastogi, and Shim [GRS98]; ROCK (for clustering nominal
attributes) by Guha, Rastogi, and Shim [GRS99]; and Chameleon by Karypis, Han, and
Kumar [KHK99].

A probabilistic hierarchical clustering framework following normal linkage algo-
rithms and using probabilistic models to define cluster similarity was developed by
Friedman [Fri03] and Heller and Ghahramani [HGO5].

For density-based clustering methods, DBSCAN was proposed by Ester, Kriegel,
Sander, and Xu [EKSX96]. Ankerst, Breunig, Kriegel, and Sander [ABKS99] developed
OPTICS, a cluster-ordering method that facilitates density-based clustering without
worrying about parameter specification. The DENCLUE algorithm, based on a set
of density distribution functions, was proposed by Hinneburg and Keim [HK98].
Hinneburg and Gabriel [HGO07] developed DENCLUE 2.0, which includes a new
hill-climbing procedure for Gaussian kernels that adjusts the step size automatically.

STING, a grid-based multiresolution approach that collects statistical information
in grid cells, was proposed by Wang, Yang, and Muntz [WYM97]. WaveCluster, deve-
loped by Sheikholeslami, Chatterjee, and Zhang [SCZ98], is a multiresolution clustering
approach that transforms the original feature space by wavelet transform.

Scalable methods for clustering nominal data were studied by Gibson, Kleinberg,
and Raghavan [GKR98]; Guha, Rastogi, and Shim [GRS99]; and Ganti, Gehrke, and
Ramakrishnan [GGR99]. There are also many other clustering paradigms. For exam-
ple, fuzzy clustering methods are discussed in Kaufman and Rousseeuw [KR90], Bezdek
[Bez81], and Bezdek and Pal [BP92].

For high-dimensional clustering, an Apriori-based dimension-growth subspace clus-
tering algorithm called CLIQUE was proposed by Agrawal, Gehrke, Gunopulos, and
Raghavan [AGGR98]. It integrates density-based and grid-based clustering methods.

Recent studies have proceeded to clustering stream data Babcock, Badu, Datar, et al.
[BBD'02]. A k-median-based data stream clustering algorithm was proposed by Guha,
Mishra, Motwani, and O’Callaghan [GMMOO00] and by O’Callaghan et al. [OMM*02].
A method for clustering evolving data streams was proposed by Aggarwal, Han, Wang,
and Yu [AHWYO03]. A framework for projected clustering of high-dimensional data
streams was proposed by Aggarwal, Han, Wang, and Yu [AHWY04a].

Clustering evaluation is discussed in a few monographs and survey articles such as
Jain and Dubes [JD88] and Halkidi, Batistakis, and Vazirgiannis [HBVO01]. The extrin-
sic methods for clustering quality evaluation are extensively explored. Some recent stu-
dies include Meild [Mei03, Mei05] and Amigd, Gonzalo, Artiles, and Verdejo [AGAV09].
The four essential criteria introduced in this chapter are formulated in Amigé, Gonzalo,
Artiles, and Verdejo [AGAV09], while some individual criteria were also mentioned ear-
lier, for example, in Meild [Mei03] and Rosenberg and Hirschberg [RHO07]. Bagga and
Baldwin [BB98] introduced the BCubed metrics. The silhouette coefficient is described
in Kaufman and Rousseeuw [KR90].

