
Using the ArcView ®

Dialog Designer ™

(Version 1.0)

Environmental Systems Research Institute, Inc.

Copyright © 1997 Environmental Systems Research Institute, Inc.

All Rights Reserved.

Printed in the United States of America.

ESRI and ArcView are registered trademarks; Avenue, the ESRI corporate logo, the ArcView logo, and Dialog Designer
are trademarks; and www.esri.com is a service mark of Environmental Systems Research Institute, Inc.

The names of other companies and products herein are trademarks or registered trademarks of their respective trademark
owners. Portions of ArcView GIS created through use of Neuron Data’s Open Interface software program. Copyright ©
1991–1997 Neuron Data. All Rights Reserved.

The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc.
This work is protected under United States copyright law and the copyright laws of the given countries of origin and
applicable international laws, treaties, and/or conventions. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or
retrieval system, except as expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests
should be sent to Attention: Contracts Manager, Environmental Systems Research Institute, Inc., 380 New York Street,
Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.

RESTRICTED/LIMITED RIGHTS LEGEND

Use, duplication, and disclosure by the U.S. Government are subject to restrictions as set forth in FAR §52.227-14 Alternate
III (g)(3) (JUN 1987), FAR §52.227-19 (JUN 1987), and/or FAR §12.211/12.212 [Commercial Technical Data/Computer
Software], and DFARS §252.227-7015 (NOV 1995) [Technical Data], and/or DFARS §227.7202 [Computer Software], as
applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA
92373-8100 USA.

iii

Contents

Chapter 1 Welcome to the Dialog Designer 1
What is a dialog? 2
Why should you use the Dialog Designer? 3
How does the Dialog Designer work? 4
What controls are available to you? 5
Getting technical support from ESRI 6
Visit ESRI on the Web 6

Chapter 2 Quick start tutorial 7
Exercise 1: Creating a dialog and adding a control to it 8
Exercise 2: Making controls work together 12
Exercise 3: Connecting your dialog to data and documents 15
Exercise 4: Adding controls directly to views and layouts 21
What next? 24

Chapter 3 Delivering an application with dialogs 25
Incorporating dialogs in an extension 26
Delivering dialogs in a project 33
Creating a personal working environment 34
Creating a system default environment 34

Appendix A Control properties descriptions 35
Control properties 36
Property descriptions 43

Appendix B Object model diagram 65
Object model 66
Class descriptions 67

Index 71

iv Using the ArcView Dialog Designer

1

C H A P T E R 1

Welcome to the Dialog
Designer

Welcome to the ArcView® Dialog Designer™. The Dialog Designer

provides Avenue™ developers with a new tool, a dialog, to customize

ArcView’s interface. You’ve seen dialogs that are part of ArcView’s

interface, you just couldn’t build them yourself within ArcView’s

development environment—until now. No matter what kind of application

you’re developing, the Dialog Designer can help you create a more

effective, user-friendly interface, tailored to your specific needs.

2 Using the ArcView Dialog Designer

What is a dialog?

A dialog is another user interface tool you can use to build applications in ArcView. A
dialog lets you organize a single task or set of related tasks onto a separate window,
much like you can organize related tasks under a particular menu item or on the button
bar. For example, with the Dialog Designer, you can

• Create your own input forms.

• Organize related tools in separate windows.

• Link what’s displayed in a dialog directly to your data.

Chapter 1 Welcome to the Dialog Designer 3

• Add buttons directly to a View or Layout.

The Dialog Designer only allows you to supplement ArcView’s interface with dialogs
that perform a specialized task. The Dialog Designer does not allow you to modify any
of ArcView’s existing dialogs or replace ArcView’s main window and run your
application completely from a dialog.

Why should you use the Dialog Designer?

Before the Dialog Designer, you couldn’t design and build custom dialogs using
ArcView. Thus, you may have turned to other applications that run outside of ArcView,
such as Microsoft® Visual Basic®, to provide the functionality you needed. While this
works to a degree, getting the external dialog to communicate with ArcView is clumsy
and inefficient. The Dialog Designer extension provides

• A cross-platform development environment that works on the PC, UNIX® workstation,
and Macintosh®.

• Integrated dialogs that don’t need to communicate with ArcView through Dynamic
Data Exchange (DDE) or Remote Procedure Calls (RPC).

• Direct access to and manipulation of ArcView components such as tables, views, and
themes.

• An easier way to distribute an application; everything can be included in an ArcView
project or incorporated into an extension.

4 Using the ArcView Dialog Designer

How does the Dialog Designer work?

To use the Dialog Designer extension, you first load it into ArcView—just like you load
any other ArcView extension. Once you do, you’ll notice a new document in the project
window called Dialogs. Double-click the icon and you’ll create a new dialog editor
document that’s ready to accept the interface components you want on your dialog—
buttons, sliders, and check boxes.

All of the interface components, or controls, you can add to your dialogs are located on
the tool bar. You simply choose the ones you want and arrange them on the dialog. Each
control has a set of properties that define it, listed on the Control Properties dialog.

Once you’ve added a set of controls to your dialog, you’ll write the Avenue scripts that
make it work. For instance, you’ll write a script that defines what happens when
someone clicks a button on your dialog. Then, you’ll attach your dialog to ArcView’s
interface so people can use it. The next chapter, ‘Quick start tutorial’, contains step-by-
step exercises that describe this process in detail. Last, if you want people to use your
dialog outside of the current project, you’ll need to package it in an extension as
described in Chapter 3, ‘Delivering an application with dialogs’.

Control Properties
Dialog Editor

Controls

Chapter 1 Welcome to the Dialog Designer 5

What controls are available to you?

The Dialog Designer contains a number of different controls you can include on your
custom dialogs. Here’s a description of each one.

Control Description

A label button performs a task when you click it. The text on the label button describes
its action.

A button likewise performs a task when you click it, but with an icon to illustrate its
action. Buttons on a dialog work the same way as buttons on the button bar.

A tool performs an action when you interact with a document such as a view. Tools
on a dialog work the same way as tools on the tool bar.

A text line accepts one line of information from you or displays information provided
by the application.

A text box accepts multiple lines of information from you or displays multiple lines of
information provided by the application.

A text label displays static text such as captions and instructions for using the
dialog.

A list box displays a single or multicolumn list of choices. The columns of the list
box cannot be edited.

A combo box displays a single column list of choices that appears to drop down
when you click it.

A check box allows a user to turn on (check) or turn off (uncheck) an option on the
dialog.

A radio button can be combined with other radio buttons to provide an exclusive set
of choices.

A slider allows you to set a discrete value within a finite range of values. A slider
can be oriented horizontally or vertically.

An icon box displays a static picture on the dialog, such as a company logo.
Acceptable file formats include TIFF, GIF, and bitmap files.

A control panel groups related controls on a dialog. You don’t interact with a control
panel.

6 Using the ArcView Dialog Designer

Getting technical support from ESRI

Please see the product registration and support card that came with ArcView, or look at
the ‘Obtaining technical support’ section of ArcView’s on-line help.

Visit ESRI on the Web

Find out everything you want to know about ESRI products and services. Visit ESRI’s
Web home page at www.esri.com.

7

C H A P T E R 2

Quick start tutorial

This chapter shows you how to begin building your own dialogs and

provides you with step-by-step tutorials that illustrate common tasks and

describe the fundamental concepts. This chapter assumes that you are

already familiar with ArcView’s development environment and have used

it before to produce customized ArcView applications. If you can write an

Avenue script, then you’ll be able to make a dialog do the things you want

it to do in no time at all.

Read this chapter to learn about how to:

• Create a dialog and add controls to it.

• Make controls interact with each other.

• Connect your dialog to your data.

• Add controls on top of your views and layouts.

Chapter 2 Quick start tutorial 9

Tip Some tools on the tool bar are drop-down tool menus. For example, click and
hold the mouse over the Label button tool to reveal other controls you can add to your
dialogs.

Set the control proper ties

4. Display the label button’s properties by double-clicking it on the dialog. ArcView
displays the list of properties in the Control Properties dialog. Here you’ll define
the label button, such as giving it a name or setting a script to run when you press
the button. Each property has equivalent Avenue requests that allow you to
manipulate the control in your scripts at run time.

5. In the Name field, type in ‘lbt_Done’. Later in this chapter, you’ll see how to use a
control’s name to identify it in scripts.

6. Double-click on the Label property and type in ‘Done’.

Attach a script to the control

7. Locate the Click property in the scrolling list and double-click it to display the
Script Manager dialog. Press New to create a new script and name the script
‘Dialog1.lbt_Done.Click’. The Control Properties dialog will clear because the
active document is no longer a dialog editor.

8. Type in the following into the new script and compile it. This script will dismiss the
dialog when you press the label button.

self.GetDialog.Close

Type in the name here.

To change a property, double-click it. Depending
upon the property, you might see an additional
dialog allowing you to set it.

10 Using the ArcView Dialog Designer

Compile and run the dialog

9. Make the dialog the active document. Press the Compile button then the Run
button . A new dialog will appear that contains the button you added. Using the
Run button to display the dialog allows you to check that it works as expected.
Once you’ve finished building a dialog, you’ll probably call it from a script
attached to a menu or button in the interface, as you’ll see how to do in the next
exercise.

10. Press the Done button on your dialog to close it. You can also press the escape key
to dismiss a dialog. This is a convenient way to dismiss a dialog if you forget to
include a control on your dialog to do so.

11. Try changing some other properties to see the effect they have on the dialog. For
example, display the properties for the dialog itself by double-clicking over an
unoccupied area of the dialog. Toggle the HasTitleBar property, then compile and
run the dialog again to see the result.

12. Save your project (optional). The next time you open this project, the Dialog
Designer will load automatically.

Keeping track of dialogs, scripts, and controls

When developing an application, the number of dialogs, controls on dialogs, and
scripts associated with dialogs gets quite large. Keeping track of all these
components can be difficult if you don’t establish some method for managing
them. One convention to set in place early is a naming convention that will make
it easy to find and reference these components.

Naming dialogs

To ensure that your dialog names don’t conflict with dialogs in ArcView or any
extensions (either developed by ESRI or third party developers), we recommend
that you prefix your dialog names with a unique identifier. For example, you
might use the name of the application you’re creating as the prefix,

<application name>.<dialog name>

or some other prefix such as the name of your organization.

Naming scripts

It’s a good idea to give your scripts descriptive names so that you can easily
reference them. Here’s a naming convention that will keep the scripts associated
with a dialog listed together in the project window and allow you to quickly find
the one you want to edit.

Chapter 2 Quick start tutorial 11

Use the name of the dialog, followed by the control name a~d the property the
script is attached to.

<dialog name>.<control name>.<property name>

For example, the name of the script attached to the Click property of a button
named ‘lbt_Done’ would be ‘MyDialog.lbt_Done.Click’.

Avoid common names that may conflict with other projects or system script
names. Avoid, for insta~ce, using the word ‘Dialog’, the first word of many of
the system scripts associated with the Dialog Designer.

Naming controls

If you use a sta~dard naming convention for your controls, they’ll be easy to
reference in your scripts. One way to do this is to give each control a prefix that
identifies its type, followed by some descriptive name, such as its visible label.
For instance, a~ OK button on your dialog would be named ‘lbt_OK’. Control
names on a particular dialog should be unique. However, you ca~ use the same
name for controls on different dialogs.

Here’s a table of suggested prefixes.

Prefix Control Type Prefix Control Type

lbt - Label button cbx - Combo box

btn - Button chk - Check box

tol - Tool rad - Radio button

txl - Text line sld - Slider

tbx - Text box ibx - Icon box

txt - Text label cpa - Control pa~el

lbx - List box

12 Using the ArcView Dialog Designer

Exercise 2: Making controls work together

You won’t often make dialogs with just one control on them. Most likely, your dialogs
will contain many controls that you’ll want to work together. For instance, you might
create a dialog where entering some text—a name and address—enables an OK button,
or checking a check box disables some other controls on the dialog. How do you make
these controls interact with each other? By writing scripts that implement the desired
behavior.

As you saw in the previous exercise, pushing a button on the dialog can execute a
script. The same is true for typing into a text line, selecting an element in a list box, or
moving the handle of a slider. Each control responds to certain types of interactions as
defined by the Control Properties for the control. Through scripts attached to these
properties, you control what the dialog does.

In this next exercise, you’ll create a dialog that adds and deletes elements from a list.
The dialog will look something like this:

Once you finish creating the dialog, you’ll learn how to make it accessible from
ArcView’s interface.

Create a new dialog and add controls to it

1. Double-click the dialog icon in the project window.

2. Double-click on the new dialog editor to display the Control Properties dialog.
Change the name of the dialog to ‘ListBuilder’.

3. Add the following controls to the dialog and set their properties as specified in the
table below. For properties associated with scripts, just create new scripts. The
actual code you’ll put in these scripts is included in the following steps.

Text you type into the text line is added to the
list. As long as there are elements in the list, the
Delete button is available to delete the selected
element.

Chapter 2 Quick start tutorial 13

Control Property Setting

 Label button Name lbt_Done

Click ListBuilder.lbt_Done.Click

Label Done

 Label button Name lbt_Delete

Click ListBuilder.lbt_Delete.Click

Label Delete

 Text line Name txl_Add

Apply ListBuilder.txl_Add.Apply

Label Add to list

 List box Name lbx_Current

HorizontalScroll True

Select ListBuilder.lbx_Current.Select

Dialog Title List Builder

Open ListBuilder.Open

Write scripts to make the dialog work

4. Write ListBuilder.Open. This script runs every time the dialog opens. An Open
script typically contains statements to initialize controls on the dialog.

'ListBuilder.Open
'Clears out the list box and disables the delete button
theListBox = self.FindByName("lbx_Current")
theListBox.Empty
theListBox.GoColumn(0)
theListBox.SetColumnWidth(3)
self.FindByName("lbt_Delete").SetEnabled(false)

This Open script clears out any elements in the list box, sets the width of the list
box, and disables the Delete button. The self object references the control or dialog
the script is attached to. Here the self object is the dialog; in the Click script of a
label button, the self object is the label button.

5. Write ListBuilder.lbt_Done.Click. This script closes the dialog.

'ListBuilder.lbt_Done.Click
'Attached to the Done button to close the dialog
self.GetDialog.Close

14 Using the ArcView Dialog Designer

6. Write ListBuilder.lbt_Delete.Click. This script deletes the highlighted element in
the list. If there are no more elements in the list, the script also disables the Delete
button.

'ListBuilder.lbt_Delete.Click
'Attached to the Delete button to remove selected elements from list
theListBox = self.GetDialog.FindByName("lbx_Current")
theListBox.DeleteRows(1)
theListBox.SelectCurrent(false)
if (theListBox.GetRowCount = 0) then
 self.SetEnabled(false)
end

7. Write ListBuilder.txl_Add.Apply. This script adds an element entered into the text
line to the bottom of the list.

'ListBuilder.txl_add.Apply
'Attached to the text line; adds what’s typed in to the list.
aNewElement = self.GetText
theListBox = self.GetDialog.FindByName("lbx_Current")
theListBox.GoRow(theListBox.GetRowCount)
theListBox.InsertRows(1)
theListBox.SetCurrentValue (aNewElement)
'Uncomment the next line and the list will be sorted
'theListBox.SortAscending(false)
self.SetText("")

To manipulate the list box, you explicitly move to the specific row you want to
operate on. In this case, the script inserts a new row after the last row. (Note: This
script will accept the return key and enter a blank line in the list.)

8. Write ListBuilder.lbx_Current.Select. This script executes when you select an
element in the list box. Doing so enables the Delete button.

'ListBuilder.lbx_Current.Select
'Attached to the list box, this script enables the Delete button.

self.GetDialog.FindByName("lbt_Delete").SetEnabled(true)

Attach the dialog to the interface and run it

At this point, you can run the dialog by pressing the Run button. But, you’ll likely want
to attach the dialogs you create to ArcView’s interface. For example, you might want to
run your dialog from a button on a view document. This next step shows you how to do
this.

9. Create the following script and attach it to a button on ArcView’s button bar. (You
can attach it to a button on a view document or any other document.)

'ListBuilder.Run
'Runs the dialog.
av.GetProject.FindDialog("ListBuilder").Open

Chapter 2 Quick start tutorial 15

Alternatively, you could have found the Dialog Editor document and gotten the
Dialog object from that object like this:

av.GetProject.FindDoc("ListBuilder").GetDialog.Open

The above statements search the current project for dialogs. If your dialogs are
loaded from an extension, you can open them using the following request:

av.FindDialog("ListBuilder").Open

The next chapter discusses extensions and other ways to distribute your dialogs.

10. Now you can press the button you just added to run the dialog.

Exercise 3: Connecting your dialog to data and documents

So far you’ve seen how to build some simple dialogs that run independently—they
don’t respond to or interact with any ArcView documents or the data displayed in the
documents. Most likely, you’ll want your dialogs to respond to something that’s currently
happening in ArcView.

In this exercise, you’ll create a dialog that displays the attributes of the selected records
in a theme. This dialog will monitor the selected features and update itself when the
selected set changes. If a new document becomes active, the dialog will either disable
itself if the new document is not a view, or update itself based upon the contents of the
new view. Here’s a preview of the dialog you’ll create:

Connect a dialog to a view

1. Add a view with a few themes in it to your project.

2. Double-click the dialog icon in the project window to create a new dialog. Name
this dialog ‘SelectedFeatures’.

16 Using the ArcView Dialog Designer

3. Add the following controls to the dialog, arranged as in the figure above. Set the
properties as specified in the table below. For those properties that are associated
with scripts, just create new scripts. You’ll fill in the code for these scripts later.

Control Property Setting

 Combo box Name cbx_Themes

Label Themes:

Select SelectedFeatures.cbx_Themes.Select

Update SelectedFeatures.cbx_Themes.Update

 List box Name lbx_Records

FieldNamesVisible True

HorizontalScroll True

Update SelectedFeatures.lbx_Records.Update

Dialog Name SelectedFeatures

DocActivate SelectedFeatures.DocActivate

Open SelectedFeatures.Open

ServerSelectionChanged SelectedFeatures.ServerSelChanged

Title Selected Features

4. Select the list box on the dialog editor. Then, from Controls, choose Control
Fasteners. Uncheck the width and height options to enable the other check box
options and then check the options to maintain the distance from the bottom and
right side of the dialog as shown in the figure below.

The list box will now change size whenever you resize the dialog (the default is to
stay the same size). For more information, press the Help button on the Control
Fasteners dialog.

Chapter 2 Quick start tutorial 17

Programming each control

In the preceding exercise, controls were enabled and disabled by whichever script was
executing at the time. Selecting an element in the list box, for instance, enabled the
Delete button because the script attached to the Select property of the list box searched
for it and enabled it. However, as the number of controls increases, it becomes more
difficult to maintain and update your dialog if several different scripts manipulate a
given control. A better approach is to program your dialog so that each control is
responsible for the actions it needs to perform.

As you’ve seen, a control executes an action by running a script; for instance, the Click
script of a button. Each control also has an Update script that manages the “state” of the
control—for instance, whether or not it’s enabled. In this exercise, you’ll write Update
scripts to manage the state of each control on the dialog.

5. Write SelectedFeatures.Open. This Open script initializes the dialog. It runs the
Update scripts of the combo and list boxes by sending the Update request to them.

'SelectedFeatures.Open
cbox = self.FindByName("cbx_Themes")
cbox.Update
lbox = self.FindByName("lbx_Records")
lbox.Update
cbox.SetListeners({lbox})

As you’ll see below, the Update scripts are responsible for initializing the controls
and enabling and disabling them.

The last line of this script allows the combo box to execute the list boxes’ Update
script. The Update script is not actually run here; the code simply establishes a
broadcaster–listener relationship between the combo box and the list box. Thus,
whenever the combo box broadcasts a message, all the controls that are listening
(in this example there’s only one) will run their Update scripts. The advantage of
establishing this kind of relationship is that it is dynamic; controls can be added to
or removed from this relationship any time. For more information on how Update
scripts execute, search the on-line Help for ‘dialogs, updating controls on’.

6. Write SelectedFeatures.cbx_Themes.Select. The primary control on this dialog is
the combo box. It displays the current themes in the active view. As you select
different themes, the list box updates to show the attributes of the selected features
of the theme.

'SelectedFeatures.cbx_Themes.Select
aTheme = self.GetCurrentValue
aVTab = aTheme.GetFTab
self.GetDialog.SetServer(aVTab)
self.BroadcastUpdate

18 Using the ArcView Dialog Designer

Selecting a theme listed in the combo box runs the above script. The script first
gets the selected theme from the combo box, then gets that theme’s VTab (FTab).
Then, the script links the dialog in a client/server relationship with the VTab. Once
done, the dialog (client) can respond when certain things happen to the VTab
(server) such as when the selection changes, when records are added or deleted, or
when the definition changes. In this example, the dialog will respond to a change in
selection on the VTab.

The last line of this script broadcasts the Update event. Recall that the Open script
established the list box as a listener to the combo box. When the combo box
broadcasts its Update event, all controls that are listening run their Update scripts—
in this case only the list box is listening. The list box Update script populates the
list box with the attributes of the current selected features of the newly selected
theme. To see how this works, look at this next script.

7. Write SelectedFeatures.lbx_Records.Update. This script performs all the functions
related to the list box. It determines whether or not the list box should be enabled
(when the active document is a view that has themes in it) and it also ensures the
list box displays the attributes of the current selected features.

'SelectedFeatures.lbx_Records.Update
aDoc = self.GetDialog.GetActiveDoc
if (aDoc.Is(View) and aDoc.GetThemes.IsEmpty.Not) then
 self.SetEnabled(true)
 aVTab = self.GetDialog.GetServer
 flist = aVTab.GetFields
 numFields = flist.Count
 self.DefineFromVTab(aVTab, flist, true)
 self.FitColumns(0..(numFields - 1),false)
else
 self.SetEnabled(false)
end

This script runs when you first open the dialog, when you select a new theme in the
combo box, when you change the selected set of features in the current theme, or
when you make a new document active. Whenever any one of these things happens,
the script redefines the list box based upon the new parameters (i.e., a new theme
or selected set). The list box defines its contents from the server VTab set up in the
previous step. You can get the server VTab object from the dialog and use it to
define the contents of the list box. In this case, the list box displays the attributes of
all the fields in the VTab. You can easily build your own list of selected fields.

8. Write SelectedFeatures.cbx_Themes.Update. This script makes sure that the combo
box displays the correct information. It runs when the dialog is first opened (called
from the Open script) and also, as you’ll see below, when a new document is made
active (DocActivate script).

'SelectedFeatures.cbx_Themes.Update
aDoc = self.GetDialog.GetActiveDoc
if (aDoc.Is(View) and aDoc.GetThemes.IsEmpty.Not) then

Chapter 2 Quick start tutorial 19

 self.SetEnabled(true)
 theThemes = aDoc.GetThemes
 self.DefineFromList(theThemes)
 self.GetDialog.SetServer(theThemes.Get(0).GetFTab)
else
 self.SetEnabled(false)
end

Just like the list box Update script, this script disables the combo box when the
active document is not a view or when there aren’t any themes in the view. Notice
that the script also sets the first theme in the view as the server VTab. That’s
because this script runs when there is no current theme—when the dialog is first
opening, or when a new view with a new set of themes is activated.

9. Write SelectedFeatures.ServerSelChanged. Even though you’ve linked the dialog to
the VTab, you still need to define what happens when the selection changes. You do
this by assigning a script to the ServerSelectionChanged property of the dialog.
ArcView runs this script whenever the selection in the server VTab changes.

'SelectedFeatures.ServerSelChanged
self.FindByName("lbx_Records").Update

Because the Avenue code that manipulates the list box is placed in the Update
script of the list box, this script just calls it. The list box then updates itself to
reflect the new selected features. You could put the code that updates the list box
directly in this script, but by confining the code to the scripts associated with the
list box you don’t duplicate code or manipulate the control from more than one
script.

10. Write SelectedFeatures.DocActivate. This script runs whenever you make a new
document active.

'SelectedFeatures.DocActivate
self.FindByName("cbx_Themes").Update
self.FindByName("lbx_Records").Update

The script calls the Update scripts of the list box and combo box. Both these scripts
make sure the information displayed in the dialog reflects the active view and the
themes in that view.

Attach the dialog to the interface and run it

11. Attach the dialog to a button on the View document.

av.FindDialog("SelectedFeatures").Open

12. Open the view you created in step 1. As you select features in a theme, the dialog
should update to reflect the selection (as long as the theme is the one being
displayed in the dialog). If you make another view active, the dialog should also
update and display the themes in that view.

20 Using the ArcView Dialog Designer

Making your dialog react to changes in ArcView

The exercises in this chapter illustrate some of the ways a dialog can react when
certain events happen in ArcView such as when a document becomes active. For
each event, you can write a script to make your dialog respond appropriately.
Here’s a summary of the various ways you can make your dialog respond.

Respond when the dialog becomes active

If you need to run a script whenever the dialog becomes active, you set the
dialog’s Activate property to the particular script you want to run. In the script,
you perform whatever actions are necessary. You can set the Activate property
either from the Control Properties dialog or with the SetActivate request on a
Dialog.

Respond when the active document changes

Suppose you create a dialog that contains tools that work with views and layouts.
As long as a view or layout is active, the tools on your dialog should be enabled;
otherwise, they should be disabled. You can write a script to enable or disable
the controls and attach it to the dialog’s DocActivate property. The DocActivate
script runs whenever the active document changes. For example, you might write
a DocActivate script like this:

'Dim control when active doc is not view or layout
'the self object is the dialog
theDoc = self.GetActiveDoc
enabled = theDoc.Is(View) or theDoc.Is(Layout)
self.GetControlPanel.SetEnabled(enabled)

Respond to a change in a particular document

Suppose you’ve created a dialog that provides extra information about an
individual view document. You want the dialog to appear when the view is open
and disappear when closed. To do this, you need to link the dialog directly to the
view document so that it can respond to changes such as closing the view. This
involves establishing a client/server relationship between the dialog and the
document, where the dialog is the client to the server document.

A dialog can respond to a limited number of server events and run a script
attached to the appropriate dialog property when that event occurs. These server
events are

• ServerActivated - The associated document is activated.
• ServerDeactivated - The associated document is deactivated.
• ServerOpened - The associated document is opened.
• ServerClosed - The associated document is closed.
• ServerSelectionChanged - The selection on the VTab is changed.
• ServerDefinitionChanged - The definition of the VTab is changed.

Chapter 2 Quick start tutorial 21

• ServerRecordsAdded - A record is added to the VTab or table document.
• ServerRecordsDeleted - A record is deleted from the VTab or table document.

To set up a server, you use the SetServer request on a Dialog. The script you
actually put this request in depends upon what you’re trying to accomplish. For
example, you might put this request in a dialog’s Open script:

'Server set in Open script
self.SetServer(av.GetProject.FindDoc("View1"))

Respond to other changes

Your dialog can respond to almost anything that can happen during a session.
However, not every event that can happen in ArcView has a dialog property you
can set. Sometimes you’ll need to do a bit of programming to make your dialog
respond accordingly.

For example, you can attach an Update script to a document’s button bar
(ControlSet) and directly call the Update scripts of the controls in your dialog.
The button bar’s Update script will run as a result of an Update event sent by
ArcView, just as the individual controls on the button bar automatically run their
Update scripts. The Update scripts of each control on your dialog would then
determine what sort of change occurred and respond accordingly.

For more information on any of the above, search the on-line Help for ‘dialogs,
responding to documents’.

Exercise 4: Adding controls directly to views and layouts

So far, you’ve seen how to add controls to a dialog and make them work with other
controls and with your data. A dialog, however, isn’t the only place you can put controls.
If you want to, you can add them directly on top of your views and layouts, making the
document act as its own dialog. For instance, you might make an application that
contains only a few buttons added directly on top of a view:

22 Using the ArcView Dialog Designer

Adding controls to views and layouts works well when the application you’re creating is
designed to work with a particular data set. If your application requires more than just a
few controls, or they need to work with any data set, you’re probably better off putting
the controls on a dialog.

In this exercise, you’ll add a text line control on top of a view, then use that control to
enter X,Y coordinate pairs. As you enter coordinates, the script associated with the text
line will draw a line connecting the coordinates.

Add a control to a view

1. Create a new, empty view in your project.

2. From Window, choose Show Control Tools. You should see the palette of controls
you can add on top of your view. The controls on this palette are the same ones you
add to a dialog, except that the check box and radio button will be disabled, as they
can’t be added to views and layouts.

3. Select the Text line tool.

4. Add a text line control to the bottom of the view window. Click and drag the mouse
to position and size the control over the view. Alternatively, you can click once to
add the control with a default size.

5. Double-click the control to display the Control Properties dialog and set the
following properties:

Control Property Setting

 Text line Name txl_Input

Apply View1.txl_Input.Apply

Label Enter X,Y:

When the map pans/ Pan with the map
zooms the control will:

Chapter 2 Quick start tutorial 23

Write scripts that make the control work

6. Write the following script and name it View1.Initialize. This script sets the object
tag of the control to be its graphic control. You’ll need to substitute the name of
your view in this script.

aGControl = av.FindDoc("View1").GetGraphics.FindByName("txl_Input")
aGControl.GetControl.SetObjectTag(aGControl)

Controls you add to views (and layouts and dialog editors) have a graphic
component (GraphicControl class) that you manipulate much like any other graphic
object you might add on top of your view. To find the graphic control, you can
search in the view’s graphic list. As you’ll see in the next script, you’ll use the text
line’s graphic control to move it across the view.

7. Write View1.txl_Input.Apply.

theView = av.GetActiveDoc
txl_Input = self.GetObjectTag
'the first coordinate is the origin of the text line
fromP = txl_Input.GetOrigin
xyCoord = txl_Input.GetControl.GetText.AsTokens(",")
toP = Point.Make(xyCoord.Get(0).AsNumber,xyCoord.Get(1).AsNumber)
'draw the line
l = Line.Make(fromP, toP)
gl = GraphicShape.Make(l)
theView.GetGraphics.Add(gl)
'move the text line
txl_Input.Invalidate
txl_Input.SetOrigin(toP)
txl_Input.Invalidate
txl_Input.GetControl.SetText("")

This script draws a line between the current position of the text line control and a
map coordinate entered into the text line. Then, it moves the text line to the end of
the line, ready to accept the next coordinate.

Activate the control

8. Run View1.Initialize.

9. Activate the text line control. Fro} the View menu bar, choose Graphics, then Run
Controls. This toggles the control from design mode to run mode.

10. Type in an X,Y map coordinate pair into the text line. To find a valid coordinate,
}ove the mouse over the view window. At the right side of the tool bar is a
coordinate display. Using the display as your guide, enter in a coordinate into the
text line. Make sure you use a comma to separate the X and Y coordinates.

24 Using the ArcView Dialog Designer

11. Optionally, append this code to View1.txl_Input.Apply. This code will add a text
label, annotating the line with the coordinate pair you typed in.

theDisplay = theView.GetDisplay
txt_Label = TextLabel.Make
txt_Label.SetLabel(fromP.GetX.SetFormat("d.dd").AsString++
 fromP.GetY.SetFormat("d.dd").AsString)
aWidth = theDisplay.ReturnVisExtent.GetWidth
'The next line sizes the text label based on the view's
'display. You may need to change it if the text gets clipped.
aSize = (aWidth * 0.3)@(aWidth * 0.04)
r = rect.Make(fromP,aSize)
gt = GraphicControl.Make(txt_Label, r)
theView.GetGraphics.Add(gt)
gt.SetEditable(false)
gt.SetConstraint(#GRAPHICCONTROL_CONSTRAINT_POSITION)

To create a text label through a script, you use the TextLabel.Make request. Then,
you create a graphic control from the control and add it to the view’s graphic list.
Although a text label is a static control, you can activate it with the SetEditable
request, thus preventing it from being edited accidentally. The last request allows
the label to pan with the map.

What next?

We hope you’ve enjoyed working through the exercises in this tutorial and found them
to be a useful introduction to the Dialog Designer. To learn about the various ways to
distribute dialogs, read the next chapter. As you begin building your own dialogs, refer
to the on-line Help to answer questions you have while working at your computer. The
on-line Help contains descriptions of common tasks—with Avenue code examples—and
a complete reference for all classes and requests.

25

C H A P T E R 3

Delivering an application
with dialogs

Depending on your application, there are several ways to distribute your

custom dialogs. If you’ll be using your dialogs with different projects or

you plan to distribute them to others either within or outside your

organization, you could create an ArcView extension. If you’ve designed

your dialogs for a specific project, you could store and deliver them in that

ArcView project. If the functionality in your dialogs is something that

only you’ll use, you could create a personal working environment. If

everyone in your organization needs your dialogs for their work, you

could create a system default environment.

In this chapter you’ll learn how to:

• Create an extension containing dialogs.

• Deliver dialogs in a project.

• Create a personal working environment that includes your dialogs.

• Create a systemwide environment for everyone.

26 Using the ArcView Dialog Designer

Incorporating dialogs in an extension

Extensions provide a powerful and flexible mechanism for delivering customized
functionality to end users. Because an extension can contain any type of ArcView object,
you can easily incorporate your dialogs and associated scripts into them. The objects in
an extension are independent of those stored within a project; thus, they are not replicated
in or saved to the project. The advantage of this is if you need to modify or update your
custom dialogs, you can update your extension and deliver a new version instead of
updating each project that uses it. A user simply loads the new version of your extension
to get the updated dialogs.

Extensions start out as projects. The first step in building an extension is to create a
project that contains the customizations—including dialogs—you want to deliver. This
project is called the extension’s source project. The extension you’ll build here uses the
Selected Features dialog created in Exercise 3 of the previous chapter. If you don’t have
access to this dialog, you can substitute one of your own.

The discussion below assumes you already know a little about building extensions. If you
don’t, refer to Chapter 5, ‘Storing and delivering customizations’ in Using Avenue or
search the on-line Help for ‘Extensions’.

Open the project containing your customizations

1. Open the project that contains the Selected Features dialog. This project will become
the source project for the extension. It should contain the dialog, a new button on the
view’s interface to launch the dialog, and all the associated scripts. If you don’t have
this project, you can substitute another project that contains a dialog. However, the
scripts below assume that you have these components; thus, you’ll need to make the
appropriate modifications to them.

Write the script that makes the extension

In the source project, you’ll write a script that builds the extension. This script, the Make
script, retrieves the objects you want to deliver from the source project and writes those
objects out to the extension file (.avx).

2. Write SelectedFeaturesExt.Make and compile it. You’ll run it later in this chapter.

'SelectedFeaturesExt.Make - Makes the extension object
SelectedFeaturesExt = Extension.Make(

"$USEREXT/SelectedFeatures.avx".AsFileName,
"Selected Features",
av.FindScript("SelectedFeaturesExt.Install"),
av.FindScript("SelectedFeaturesExt.Uninstall"),
{"$AVBIN/avdlog.dll".AsFileName})

SelectedFeaturesExt.SetExtVersion(1)
SelectedFeaturesExt.SetAbout("Selected Features dialog (v1)")

Chapter 3 Delivering an application with dialogs 27

SelectedFeaturesExt.SetUnloadScript(av.FindScript("SelectedFeaturesExt.Unload"))
SelectedFeaturesExt.SetCanUnloadScript(av.FindScript("SelectedFeaturesExt.CanUnload"))

'Retrieve Selected Features dialog from project, remove server and VTab
'object reference, and add it to extension
aDialog = av.FindDialog("SelectedFeatures")
aDialog.SetServer(nil)
aDialog.FindByName("lbx_Records").Empty
aDialog.FindByName("cbx_Themes").Empty
SelectedFeaturesExt.Add(aDialog)

'Retrieve View button that launches dialog and add it to the extension
SelectedFeaturesExt.Add(av.FindGUI("View").GetButtonBar.GetControls.Get(1))

'Retrieve all scripts for the dialog, make sure they are complied, then
'add them to the extension. Scripts prefix by "SelectedFeatures"
for each aDoc in av.GetProject.GetDocs
 if (aDoc.Is(SEd)) then
 if (aDoc.GetName.Contains("SelectedFeatures.")) then
 if (aDoc.IsCompiled.Not) then
 aDoc.Compile
 end
 SelectedFeaturesExt.Add(av.FindScript(aDoc.GetName))
 end
 end
end

'Write the extension to file
SelectedFeaturesExt.Commit

This script first makes the extension object (SelectedFeaturesExt) using the
Extension.Make request. The parameters for this request are

Parameter Setting

Extension’s file name SelectedFeatures.avx

Extension name Selected Features

Install script name SelectedFeaturesExt.Install

Uninstall script name SelectedFeaturesExt.Uninstall

Dependencies list {“$AVBIN/avdlog.dll”.AsFileName}

Then the Make script sets some properties for the extension such as the version
number, about string, Unload script name, and CanUnload script name. The script
then adds the dialog, the button, and the necessary scripts to the extension object
and commits them to the extension file.

If you use your extension’s source project to test your dialogs, you need to remove
any unnecessary object references to prevent those objects from being written to

28 Using the ArcView Dialog Designer

your extension file. For instance, in this example the Selected Features dialog sets up a
server VTab and also defines the list box contents from the VTab and the combo box
contents from a list of themes. Running the dialog will establish the object references.
Thus, if you then write the dialog to your extension, these referenced objects would be
written to the extension as well. Unless you’re distributing the additional objects with
the extension, you should remove references to them before you write the dialog to the
extension. The following code fragment from the Make script sets the dialog’s server to
nil and empties the list and combo box:

aDialog = av.FindDialog("SelectedFeatures")
aDialog.SetServer(nil)
aDialog.FindByName("lbx_Records").Empty
aDialog.FindByName("cbx_Themes").Empty

At this point, don’t run this Make script yet. You’ll run it after you’ve written all the
other scripts the extension needs—the Install, CanUnload, Uninstall, and Unload
scripts. In general, it’s a good idea to name all scripts associated with an extension with
a common prefix. In this example, the scripts for the extension are prefixed with
“SelectedFeaturesExt.”

What does your extension need in order to w ork?

An extension can be dependent on other extensions or certain ESRI shared
libraries (dlls). When ArcView loads your extension it makes sure that everything
the extension depends upon is already loaded. All extensions that contain dialogs
must be dependent upon either the ESRI dialog library, avdlog.dll or the Dialog
Designer extension, dialog.avx. If you want the users of your extension to have
access to the dialog editor in addition to your dialogs, use $AVEXT/dialog.avx in
the dependencies list. If your extension delivers complete dialogs that users will
not edit, use $AVBIN/avdlog.dll in the dependencies list.

Write the scripts to load and install the extension

As you create your extension, you need to consider how your customizations will get
added to ArcView when a user loads it. When you open the Extensions dialog and check
an extension, two scripts run—the Load script and the Install script.

The Load script executes once when an extension file loads into ArcView. Use this script
to establish the environment your extension requires such as connecting to a database or
setting some object tags. Nothing special needs to be done to load an extension
containing dialogs. The Load script is optional and is not used in this example.

The Install script executes when you first load the extension and every time you open a
project or create a new project during that ArcView session. The Install script defines
how the extension objects are installed into the current project.

Chapter 3 Delivering an application with dialogs 29

3. Write SelectedFeaturesExt.Install and compile it. This Install script adds the button
to the View button bar to launch the dialog.

'SelectedFeaturesExt.Install
'Install user interface components if a project is open
if (av.GetProject = nil) then
 return nil
end

'Retrieve the button from the extension (self) and add it after the
'first button in the View button bar
myButton = self.Get(1)
viewGUI = av.GetProject.FindGUI("View")
viewGUI.GetButtonBar.Add(myButton, 0)
viewGUI.SetModified(TRUE)

The Install script adds extension objects to the current project; thus, if there isn’t a
current project, the script ends. If there is, the Install script adds the button to the
View’s DocGUI. The Install script retrieves objects from the extension in the same
order that you added them. Recall that in the Make script, the button is the second
object added to the extension; thus, you retrieve it using self.Get(1), where the self
object is the extension.

The Install script doesn’t need to install any dialogs or scripts referenced by the
extension into the current project. ArcView will automatically search through any
loaded extensions to find dialogs and scripts.

Write the script that determines whether the extension can be unloaded

4. Write SelectedFeaturesExt.CanUnload and compile it. The CanUnload script checks
to see if your extension can be unloaded.

'SelectedFeaturesExt.CanUnload
return (System.CanUnloadLibrary(self.GetDependencies.Get(0)))

This script checks whether the dialog library, avdlog.dll, can be unloaded. From the
Make script you know that avdlog.dll is the first item in the dependencies list of the
extension (self). You can use self.GetDependencies.Get(0) to reference that library
when you check to see if it can be unloaded.

In the extensions you create in the future, the CanUnload script is a place where you
can query some state and determine whether it’s OK to unload your extension. For
instance, the CanUnload script for the Dialog Designer extension checks whether the
current project has any dialogs in it. If it does, the CanUnload script prevents you
from unloading the Dialog Designer extension because the dialogs in the project
depend upon the functionality the Dialog Designer provides.

30 Using the ArcView Dialog Designer

Write the scripts to unload and uninstall the extension

To unload your extension, you must remove any objects from the current project that
the extension installed. In this example, this means removing the button added to the
View’s DocGUI. When you unload an extension, two scripts run—the Uninstall script
and the Unload script.

5. Write SelectedFeaturesExt.Uninstall and compile it. This Uninstall script removes
extension objects from the project when you unload the extension. All objects that
you add to the project in the Install script must be removed from the project in the
Uninstall script.

'SelectedFeaturesExt.UnInstall
if (av.GetProject = nil) then
 return nil
end

if (av.GetProject.IsClosing) then
 return nil
end

'Remove the button from the button bar
theButtonBar = av.GetProject.FindGUI("View").GetButtonBar
theButtonBar.Remove(self.Get(1))

This script removes the new button from the View button bar. Again, you can use the
extension (self) to directly reference the objects to remove from the current project.
The Uninstall script is also the place where you remove any objects from the project
that are created and depend upon the extension.

6. Write SelectedFeaturesExt.Unload and compile it. Unload scripts perform any final
cleanup your extension requires.

'SelectedFeaturesExt.Unload
Dialog.DetachFromExtension(self)

Any extension containing dialogs must have the Dialog.DetachFromExtension
request in its Unload script. This request allows the extension to unload properly.
Your Unload scripts may contain additional statements required to unload your
extension.

Create the extension

7. Make sure the Install, Uninstall, CanUnload, and Unload scripts are compiled.

8 Run the Make script.

9. Save your source project and close it.

Chapter 3 Delivering an application with dialogs 31

Test the extension

10. Open a new project and load the Selected Features extension using the Extensions
dialog. Test your dialog to make sure it works correctly.

If everything works correctly then you’re done. You’ve successfully created an
extension containing dialogs. If there are any problems, go back into your source
project and fix them and run the Make script again.

Other considerations

You’ve just learned how to create a simple extension. If your extension creates and uses
object tags or delivers customized document user interfaces (DocGUIs), there are a few
extra things you need to consider before distributing the extension.

Do your dialogs or other objects in your extension use object tags?

You should avoid setting object tags on objects in your source project as they may get
written out to the extension. For example, if a script in your source project sets an
object tag and you test that script, ArcView will create the object tag. If that object tag
is attached to an object that gets incorporated into your extension (e.g., a dialog or
menu item), it can cause problems in projects that load your extension. To avoid this
problem, you should remove all object tags from your extension before you distribute it.
Add the following lines of code to the end of your extension’s Make script after the
Commit statement.

myExt.Commit

RFileName = FileName.Make("$USEREXT/myext.avx")
WFileName = FileName.Make("$USEREXT/myext.tmp")
RFile = LineFile.Make(RFileName,#FILE_PERM_READ)
WFile = LineFile.Make(WFileName,#File_PERM_WRITE)
WFile.SetScratch(TRUE)
while (RFile.IsAtEnd.Not)
 buf = RFile.ReadElt
 if (buf.Contains("ObjectTag:").not) then
 WFile.WriteElt(buf)
 end
end
RFile.Close
WFile.Flush
File.Copy(WFilename, RFileName)
WFile.Close

This modification opens the avx file as a LineFile, creates a temporary file, and writes
every line except ObjectTag lines in the avx file to the temporary file. Then the temporary
file is copied to the avx file name.

32 Using the ArcView Dialog Designer

Does your extension deliver a customized DocGUI?

If your extension delivers a customized DocGUI, it may contain extraneous information
associated with the DocGUI. For instance, the Window menu of your DocGUI contains
menu options to activate all documents that are currently open in the project. Also, the
separator in this menu references an object that contains a list of the open windows.
These menu options and the object tag are written to the extension with the DocGUI.
This will cause problems in projects that load the extension.

If your customized DocGUI is a View or Layout, you may need to remove a few
controls that the Dialog Designer installs into these DocGUIs. These controls are the
“Show/Hide Control Tools” on the Windows menu and the “Design/Run Controls” on
the Graphics menu. If your extension will not be dependent upon the Dialog Designer
extension (dialog.avx), you should remove these menu options from these GUIs before
you add them to your extension.

To remove the object tag and menu controls, add the following lines of code to your
Make script where you add the View or Layout GUI.

'Get the customized View DocGUI from the project
viewGUI = av.getproject.FindGUI("View")
viewMenuBar = viewGUI.GetMenuBar

'Find separator that contains the object tag and set the object tag to nil
winUpdate = viewMenuBar.FindByScript("WindowMenuUpdate")
winUpdate.SetObjectTag(nil)

'Delete all the activate window menu options
cSet = winUpdate.GetControlSet
cList = cSet.GetControls
last = cList.Get(cList.Count - 1)
while (last <> winUpdate)
 cSet.Remove(last)
 last = cList.Get(cList.Count- 1)
end

'Find the controls that were added by Dialog Designer and remove them
showControlTools = viewMenuBar.FindByScript("GraphicControl.ShowHideTools")
designControls = viewMenuBar.FindByScript("GraphicControl.DesignRun")
showControlTools.GetControlSet.Remove(showControlTools)
designControls.GetControlset.Remove(designControls)

'Then add your DocGUI to your extension
myExt.Add(viewGUI)

Distributing your extension

Once you’ve built your extension, you’ll want to distribute it. In order to run an
extension with dialogs, ArcView requires your extension file (.avx) and two additional
files: avdlog.dll and avdlog.dat. These two files are installed with the Dialog Designer

Chapter 3 Delivering an application with dialogs 33

and are located in the bin and lib directories of the ArcView install directory (bin16 and
lib16 on Windows® 3.1; bin32 and lib32 on Windows 95® and Windows NT®). In
general, you should distribute these files with your extension and not expect an end user
to install the Dialog Designer on their system.

Where you install these files depends partly upon how you’ve built your extension. You
specify the location of avdlog.dll in the extension’s Make script (typically located in the
bin directory). Avdlog.dat must be installed into the lib directory. Your extension file
(.avx) can be installed in the ArcView ext directory (ext16 or ext32 on Windows) or in the
directory specified with the USEREXT environment variable.

Note Deploying an applicaiton under Windows 3.1 requires one additional DLL,
ndwinx.dll. This file should be installed in the bin16 directory.

Delivering dialogs in a project

If you’ve designed a dialog for a specific project and this is the only project that you’ll
ever use it in, then it isn’t necessary to create an extension. You can load the Dialog
Designer into this project and create the dialog. The project would remain dependent on
the Dialog Designer extension. Anyone who can access the Dialog Designer extension
can load the project and edit the dialogs.

Suppose you want to distribute a project with dialogs, yet not let anyone see or edit the
dialog editor documents in the project window. You can create a new project based on
the original source project that contains your dialogs but without the associated dialog
editor documents. This new project is not dependent on dialog.avx, but instead on a
special extension, dlogcore.___ (located in $AVEXT), that loads only the dialog library
(avdlog.dll) into the project. Thus, you’ll be able to display dialogs, yet you won’t see
the dialog editor icon in the project window.

To create a project without dialog editors

1. Make sure all the dialogs in your development project are compiled.

2. From the project’s File menu, choose Save Detached.

3. Choose Yes to save your current development project. All changes that you’ve made
to this project during this session will be saved.

4. Specify a name for the new detached project. Your current development project will
be saved to the new project and the dialog editor icon will be removed from the
project window.

Note Once you’ve detached a project, keep the source project if you need to edit the
dialogs in the future. You can’t interactively edit the dialogs in the detached project.

34 Using the ArcView Dialog Designer

Creating a personal working environment

If you need to access your own dialogs every time you start ArcView, you could create a
user default project in you working directory.

To create user default project with your dialogs

1. Open a project and load the Dialog Designer.

2. Create your dialogs and make any other changes to the interface you want.

3. From the project’s File menu, choose Save Detached to detach the project from the
Dialog Designer.

4. Open your new detached project and choose Make Default from the Customize
Dialog box.

ArcView creates a file in your home directory called default.apr. Now, whenever you
start ArcView, all your customizations, including your dialogs, will be available.

Creating a system default environment

If everyone in your organization will be using your dialogs in all their work, you could
create a new system default environment. This is an easy way to deliver your dialogs
without having to learn how to create an extension.

To create user default project with your dialogs

1. Open a project and load the Dialog Designer.

2. Create your dialogs and make any other changes to the interface you want.

3. From the project’s File menu, choose Save Detached to detach the project from the
Dialog Designer.

4. In your new detached project, create and run a new script containing the following
line of code:

av.GetProject.MakeSysDefault("$HOME/asysdef.apr".AsFileName, False)

Prefix this script’s name with a dot (.), for example, .MyScript. This script creates a
system default file in your home directory called asysdef.apr.

5. Copy this file into ArcView’s etc directory and name it default.apr.

Now, whenever anyone starts ArcView, all your customizations, including your
dialogs, will be available.

35

A P P E N D I X A

Control properties
descriptions

Every control on the dialog, and the dialog itself, is defined by a set of

properties that govern its behavior. For example, you set a property to

define the text label of a check box, to set the upper and lower bounds of a

slider, and to set the script to run when you click a button. While

designing your dialog, you set these properties through the Control

Properties dialog. To change them when the dialog is running, you use the

appropriate Avenue request in your scripts.

This appendix lists the properties for each control and contains a complete

description of each one.

36 Using the ArcView Dialog Designer

Control properties

This section lists the control properties for each control and for the dialog. See the next
section for a more thorough discussion of each property.

 Button

Use a button to begin, end, or interrupt a process. Buttons are typically represented by
an icon that indicates what it does. If you need to display text, use a label button
instead.

Click - the name of the script to execute when you click the button.

Disabled - enables or disables the button.

Help - the status bar help string and tool tip.

HelpTopic - does not apply to buttons, but listed to maintain compatibility with
ArcView GIS Version 3.0a. Displays a help topic when set as dialog property; see
Dialog below.

Icon - the name of the icon to display.

Invisible - specifies if the button is visible.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

 Check box

Use a check box to provide a true/false or yes/no option on your dialog. When selected,
the check box will appear checked.

Click - the name of the script to execute when you click the check box.

Disabled - enables or disables the check box.

Help - the status bar help string and tool tip.

Invisible - specifies if the check box is visible.

Label - the visible text string that annotates the check box.

Selected - sets the initial state of the check box when you first display the dialog.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

38 Using the ArcView Dialog Designer

 Dialog (continued)

DefaultButton - identifies a label button on the dialog that will execute its Click script
when the return key is pressed.

DocActivate - the name of the script to execute whenever a document is activated.

EscapeEnabled - allows you to dismiss a dialog by pressing the escape key.

HasTitleBar - determines whether the dialog has a title bar.

HelpTopic - the help topic to display when the F1 key is pressed over the dialog.

Modal - makes a dialog the focus of input, preventing any interaction with ArcView.

Open - the name of the script to run when the dialog is opened.

Resizable - specifies if a dialog can be resized once displayed.

ServerActivated - the name of the script to run when the dialog’s server document
becomes active.

ServerClosed - the name of the script to run when the dialog’s server document closes.

ServerDeactivated - the name of the script to run when the dialog’s server document
deactivates.

ServerDefinitionChanged - the name of the script to run when the definition of the
dialog’s server VTab changes.

ServerOpened - the name of the script to run when the dialog’s server document opens.

ServerRecordsAdded - the name of the script to run when records are added to the
dialog’s server VTab.

ServerRecordsDeleted - the name of the script to run when records are deleted from the
dialog’s server VTab.

ServerSelectionChanged - the name of the script to run when the selection changes in a
dialog’s server VTab.

Title - the text appearing in the dialog’s title bar.

Update - the name of the script to execute when an Update event occurs.

 Icon box

Use an icon box to display an icon on the dialog. Create icons from: Windows bitmap
(.bmp), GIF (.gif), TIFF (.tif), X bitmap (.xbm), Sun® Raster files (.rs), Claris®

MacPaint™ (.mcp), and Neuron Data’s Open Interface icon resources.

Icon - the name of the icon to display.

Invisible - specifies if the icon box is visible.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

Appendix A Control properties descriptions 39

 Label button

Use a label button to begin, end, or interrupt a process. Label buttons contain a text
label that indicates what the label button does.

Click - the name of the script to execute when you click the label button.

Disabled - enables or disables the label button.

Help - the status bar help string and tool tip.

Invisible - specifies if the label button is visible.

Label - the visible text string that annotates the label button.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

 List box

Use a list box to present a list of choices to select from. A list box can contain many
rows and columns and can be defined from a list object or a VTab.

Apply - the name of the script to run when a cell is double-clicked.

Disabled - enables or disables the list box.

Help - the status bar help string and tool tip.

HorizontalScroll - add a horizontal scroll bar to the list box.

Invisible - specifies if the list box is visible.

NextControl - the control that will receive keyboard focus when the tab key is pressed.

Select - the name of the script to execute when a selection is made.

SelectionStyle - defines whether you can select a single cell, multiple cells, a single
row, or a single column from the list box.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

VerticalScroll - adds a vertical scroll bar to the list box.

 Radio button

Use a radio button to present a set of mutually exclusive options. You group a set of
radio buttons by drawing them inside a control panel. Selecting one radio button
deselects the other radio buttons on the same panel.

Click - the name of the script to execute when you click the radio button.

Disabled - enables or disables the radio button.

40 Using the ArcView Dialog Designer

 Radio button (continued)

Help - the status bar help string and tool tip.

Invisible - specifies if the radio button is visible.

Label - the visible text string that annotates the radio button.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

 Slider

Use a slider to set a value from a discrete range of continuous values.

AuxIncrement - adds tick marks along either the top or left side of the slider, depending
upon its orientation.

Click - the name of the script to execute when you click the slider.

Disabled - enables or disables the slider.

Drag - the name of the script to execute while you drag the slider handle.

Help - the status bar help string and tool tip.

Horizontal - creates a horizontal or vertical slider.

Invisible - specifies if the slider is visible.

Lower - sets the lower bound of the slider’s range.

MainIncrement - adds tick marks along either the bottom or right side of the slider,
depending upon its orientation.

NextControl - the control that will receive keyboard focus when the tab key is pressed.

ReadOnly - creates a read-only slider.

StepButtons - adds or removes buttons from the slider that increment the slider’s value.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

Upper - sets the upper bound of the slider’s range.

Value - sets the initial value for the slider.

ValueIncrement - restricts the values a slider can assume (e.g., only odd numbers).

 Text box

Use a text box when you need to display or edit multiple lines of text. If you only need
a single line, use a text line instead.

Changed - the name of the script to execute whenever the text changes.

Appendix A Control properties descriptions 41

Click - the name of the script to execute when you click the text box.

Disabled - enables or disables the text box.

Empty - the name of the script to execute when you enter text into an empty text box or
clear all the text from the text box.

Help - the status bar help string and tool tip.

HorizontalScroll - adds a horizontal scroll bar to the text box.

Invisible - specifies if the text box is visible.

Label - the visible text string that annotates the text box.

NextControl - the control that will receive keyboard focus when the tab key is pressed.

ReadOnly - creates a read-only text box.

Size - sets the maximum number of characters that can be entered in the text box.

Tag - stores a text string with the control.

Text - sets the default text that appears in the text box.

Update - the name of the script to execute when an Update event occurs.

VerticalScroll - adds a vertical scroll bar to the text box.

 Text label

Use a text label to annotate your dialog. There is no user interaction with a text label; it
simply displays static text.

Disabled - enables or disables the text label.

Invisible - specifies if the text label is visible.

Label - the text string of the text label.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

 Text line

Use a text line when you want to provide a single line for text input. If you need more
than one line, use a text box instead.

Apply - the name of the script to execute whenever the return key is pressed or when the
text line loses focus.

Changed - the name of the script to execute whenever the text changes.

Click - the name of the script to execute when you click the text line.

Disabled - enables or disables the text line.

42 Using the ArcView Dialog Designer

 Text line (continued)

Empty - the name of the script to execute when you enter text into an empty text line or
clear all the text from the text line.

FocusLost - the script to execute when the tab key is pressed or the mouse is moved.

Help - the status bar help string and tool tip.

HiddenText - replaces all characters with an asterisk (*).

Invisible - specifies if the text line is visible.

Label - the visible text string that annotates the text line.

LabelSize - sets the width of the label.

NextControl - the control that will receive keyboard focus when the tab key is pressed.

ReadOnly - creates a read-only text line.

Size - sets the maximum number of characters that can be entered in the text line.

Tag - stores a text string with the control.

Text - sets the default text that appears in the text line.

TextType - defines the types of characters that a text line can accept: alphanumeric
characters, integers, or real numbers.

Update - the name of the script to execute when an Update event occurs.

 Tool

Use a tool when you need to interact with a document. A tool generally stays depressed
when clicked, but usually nothing happens until you click somewhere in the active
document. For instance, you’d use a tool if you wanted a user to specify an area on the
display to zoom in to.

Apply - the name of the script to execute when you click on a document such as a view.

Click - the name of the script to execute when you click the tool.

Cursor - identifies the cursor to use.

Disabled - enables or disables the tool.

Help - the status bar help string and tool tip.

HelpTopic - does not apply to tools, but listed to maintain compatibility with ArcView
GIS Version 3.0a. Displays a help topic when set as dialog property; see Dialog above.

Icon - the name of the icon to display.

Invisible - specifies if the tool is visible.

Tag - stores a text string with the control.

Update - the name of the script to execute when an Update event occurs.

Appendix A Control properties descriptions 43

Property descriptions

This section contains an alphabetical listing of all properties.

Activate

The name of a script attached to the dialog’s activate event. This script is executed
when the dialog becomes the active dialog (for example, when the mouse enters the
window of a modeless dialog).

Applies to: Dialog

Avenue Requests: SetActivate, GetActivate

AlwaysOnTop

Controls whether or not the dialog will stay on top of the ArcView application window.
When true, the dialog will always stay on top of ArcView’s application window. Setting
this property will not keep the dialog on top of the windows of other applications
running on your system. This property is not supported on the Macintosh and some
UNIX workstations.

Applies to: Dialog

Avenue Requests: SetAlwaysOnTop, IsAlwaysOnTop

Apply

Specifies the name of the script to execute when an Apply event occurs. A tool, text
line, and list box control each have different implementations of the Apply event.

An Apply event on a tool is triggered by clicking the mouse on a document such as a
view.

An Apply event on a text line occurs when you press the return key while the text line
has the keyboard focus and the dialog doesn’t have a default button set. This event is
not triggered by the text line losing focus such as when you press the tab key or use the
mouse to move to another control; see the FocusLost property below. While you can use
the Apply script to validate the text entered into the text line, it may be better to place
the validation on the button that executes the dialog such as an OK button.

44 Using the ArcView Dialog Designer

An Apply event on a list box occurs when the user double-clicks a cell. Double-clicking
the cell runs the Select script (Select property) first, then the script specified with the
Apply property. The Apply event typically performs some action on the selection. For
example, double-clicking a cell might delete its contents.

With a list box, you can also run scripts when the user

• Clicks a cell; set the Select property or use the SetSelect request.

• Selects a specific cell or group of cells; use the SetRangeSelect request.

• Double-clicks a specific cell or group of cells; use the SetRangeApply request.

Applies to: List box, Text line, Tool

Avenue Requests: SetApply, GetApply

AuxIncrement Property

Adds tick marks along either the top or left side of the slider, depending upon the slider
orientation. The default value for this property is 0, or no tick marks. The value you
specify represents the distance between the tick marks in the units of the slider and
should be appropriate for the range of the slider. For example, a value of 1 on a slider
with a range from 0 to 10 would create a tick mark every one unit along the slider.
However, a value of 1 is not appropriate where the range of the slider is from 0 to 1000.

This property has no effect on the slider’s current value and is only used to enhance the
display of the slider. Some operating systems don’t support tick marks on sliders.

Applies to: Slider

Avenue Requests: GetAuxIncrement, SetAuxIncrement

Changed Property

Specifies the name of the script to execute when you change the text in the text line or
text box. This script runs after every keystroke. This event is not triggered when text is
cut from or pasted into the text line.

Applies to: Text box, Text line

Avenue Requests: GetChanged, SetChanged

Appendix A Control properties descriptions 45

Click Property

Specifies the name of the script to execute when you click on a control.

Applies to: Button, Check box, Label button, Radio button, Slider, Text box, Text line,
Tool

Avenue Requests: GetClick, SetClick

Close Property

The name of the script to execute when the dialog is closed.

Applies to: Dialog

Avenue Requests: GetClose, SetClose

Closeable Property

Indicates whether the dialog can be closed from the standard window controls on the
dialog’s frame. Note: Different operating systems implement different window frame
controls. Thus, even though this property is set to false, the dialog may still be closeable
under some operating systems.

Applies to: Dialog

Avenue Requests: IsCloseable, SetCloseable

Cursor Property

Identifies the cursor associated with a tool. Double-click the Cursor property to display
the Cursor Manager, a dialog box that contains a list of available cursors. The cursor
you select appears when you use the tool on the active document.

Applies to: Tool

DefaultButton Property

Identifies a label button inside a dialog that will have its click script executed when the
user presses the return key. The default button only works when a text line, slider, list
box, or combo box control currently has the keyboard focus in the running dialog. Thus,
if a check box currently has the focus in the dialog, it will be checked or unchecked

46 Using the ArcView Dialog Designer

when the user presses return. Similarly, if another label button has the keyboard focus,
its click script will execute, not the default label button’s click script.

If, at run time, the default button is disabled, its click script will not execute. Setting a
default button will override the Apply property on a text line.

Use this property, for instance, on dialogs that contain a series of text line controls
where the user enters several pieces of information, all of which are validated by
pressing return to execute the click script of an OK button.

Applies to: Dialog

Avenue Requests: GetDefault, SetDefault

Disabled Property

Enables or disables the control. You disable a control when it’s inappropriate to use it.
Typically you’ll enable or disable a control through the control’s Update script. The
Update script determines whether or not the control should be enabled based on the
state of other controls on the dialog or on the state of ArcView. For example, you might
include a line of code like this:

self.SetEnabled(some condition)

The self object in a control’s Update script is the control itself.

Disabling a control panel will disable all the controls on that panel. The dialog itself is
a control panel; thus, to disable all the controls on a dialog, you could do this:

aDialog.GetControlPanel.SetEnabled(false)

Applies to: Button, Check box, Combo box, Control panel, Label button, List box,
Radio button, Slider, Text box, Text label, Text line, Tool

Avenue Requests: IsEnabled, SetEnabled

DocActivate Property

The name of a script to execute whenever an ArcView document is activated. This lets
the dialog know about any document that becomes active. For example, if you want to
disable the controls on a modeless dialog when the active document is not a view or
layout, include this code in your DocActivate script:

'Dim control when active doc is not view or layout
theDoc = self.GetActiveDoc
enabled = theDoc.Is(View) or theDoc.Is(Layout)
'the self object is the dialog
self.GetControlPanel.SetEnabled(enabled)

Appendix A Control properties descriptions 47

ArcView sends a DocActivate event to all open dialogs that have a DocActivate
property set whenever a document becomes active.

The DocActivate script is also where you might include code to update individual
controls on your dialog. For example, suppose your dialog lists the active themes in a
view. As different views become active, you’d want to update the list of themes to
reflect those in the current view.

theDoc = self.GetActiveDoc
aListBox = self.FindByName("aListBox1")
if (theDoc.Is(View) and theDoc.GetThemes.IsEmpty.Not) then
 theThemes = theDoc.GetThemes
 aListBox.DefineFromList(theThemes)
else
 aListBox.DefineFromList({})
end

If, for some reason, the DocActivate script contains an error (e.g., syntax error), the
dialog will no longer respond to the DocActivate event (and thus, the DocActivate
script will not execute). After correcting the problem with the script, you must reset the
DocActivate property on the Control Properties dialog or use the ResetDocActivate
request on the Dialog class.

When finding the active document in a DocActivate script or any script called from it,
use the GetActiveDoc request on the Dialog object (the self object in the examples
above), not the application object, av.

Applies to: Dialog

Avenue Requests: GetDocActivate, ResetDocActivate, SetDocActivate

Drag Property

The name of the script that will execute repeatedly while you drag the slider handle.

Applies to: Slider

Avenue Requests: GetDrag, SetDrag

Empty Property

Specifies the name of the script to execute whenever you enter text into an empty text
line or text box, or when you clear out all of the text in a text line or text box.

Applies to: Text box, Text line

Avenue Requests: GetEmpty, SetEmpty

48 Using the ArcView Dialog Designer

EscapeEnabled Property

Allows you to dismiss a dialog by pressing the escape key. Pressing escape sends the
Close request to the dialog. This property is a design time property that prevents you
from creating a modal dialog that can’t be dismissed for some reason. When you’ve
finished editing your dialog and are ready to incorporate it into your application, you
may want to set this property to false so that a user of your dialog can’t dismiss it by
pressing escape.

Applies to: Dialog

Avenue Requests: IsEscapeEnabled, SetEscapeEnabled

FieldNamesVisible Property

Specifies whether or not field names will appear as the first row of the list box when the
list box is defined from a VTab. If the field has an alias, it will be displayed.

Applies to: List box

Avenue Requests: GetFieldNamesVisible, SetFieldNamesVisible

FocusLost Property

Specifies the name of the script to execute when the text line loses focus. This occurs
when you press the tab key or use the mouse to move to another control.

Applies to: Text line

Avenue Requests: GetFocusLost, SetFocusLost

HasTitleBar Property

Determines whether or not the dialog frame will have a title bar. To set the text that
appears in a title bar, use the Title property.

Applies to: Dialog

Avenue Requests: GetTitle, HasTitleBar, SetTitle, UseTitleBar

Appendix A Control properties descriptions 49

Help Property

Specifies the help string for the control when you move the mouse over it. This help
string has two components: a string that appears in ArcView’s status bar and a tool tip
that appears directly over the control under the Windows 95 and Windows NT operating
systems. The syntax for the help string is

tool tip//status bar help

Typically the tool tip is one or two words that describe the control, whereas the status
bar help string is a longer description of the control. If you just want a tool tip, enter the
string as

tool tip//

Tool tips, however, do not appear over control panels. If you just want the status bar
help string, enter the string without ‘//’.

Applies to: Button, Check box, Combo box, Control panel, Label button, List box,
Radio button, Slider, Text box, Text label, Text line, Tool

Avenue Requests: GetHelp, SetHelp

HelpTopic Property

Specifies the name of the help topic to display as context sensitive help for the dialog
when the F1 key is pressed over the dialog. This property is only functional on the
dialog itself. In order to maintain compatibility with ArcView GIS Version 3.0a, this
property also appears on the Control Properties dialog for buttons and tools. However, it
is not functional with buttons and tools on dialogs.

The value of this property is the name of the help topic, given as its topic ID (# footnote
in the source help file), followed by @, then the name of the help file containing the
topic. Use the following syntax:

<aTopicName>@<aHelpFileName>

for example, mytopic@myhelp.hlp. ArcView will search for the help file in the Help
directory of ArcView’s install directory. While you can optionally specify a pathname to
the help file, the best method for integrating your help file with ArcView’s help system
is to place it in ArcView’s Help directory. Then you can link your help file to ArcView’s
contents file (arcview.cnt).

For information on building help files, search the on-line help index for ‘help files’.

Applies to: Dialog

Avenue Requests: GetHelpTopic, SetHelpTopic

50 Using the ArcView Dialog Designer

HiddenText Property

When set to true, this property replaces any characters typed into the text line with an
asterisk (*). For example, set this property when you want the text line to accept a
password. The default value is false.

Applies to: Text line

Avenue Requests: HasHiddenText, SetHiddenText

Horizontal Property

Orients the slider either horizontally or vertically. When true, the slider will be oriented
horizontally. This is the default.

Applies to: Slider

Avenue Requests: IsHorizontal, SetHorizontal

HorizontalScroll Property

Adds a horizontal scroll bar to a list box or text box.

If a text box doesn’t have a horizontal scroll bar and the text is longer than the width of
the text box, the text will wrap. With a horizontal scroll bar, the text will wrap when the
new line (NL) character is encountered in the text string displayed in the text box.

If a list box doesn’t have a horizontal scroll bar, its columns will be stretched or
compressed to fit the width of the list box. To avoid this behavior set a column width
for each column explicitly or add a horizontal scroll bar.

Applies to: List box, Text box

Avenue Requests: HasHorizontalScroll, SetHorizontalScroll, FitRows, SetColumnWidth

Icon Property

Specifies the name of the icon associated with a button, a tool, or an icon box.

To set an icon, double-click the Icon property to display the Icon Manager, a dialog box
that contains a list of available icons. From this dialog, you can load your own icon.
Valid file formats for an icon include: Windows bitmap, GIF, TIFF, X bitmap, Sun®

Raster files, Claris® MacPaint™, and Neuron Data’s Open Interface icon resources. For
information on loading your own icons into the Icon Manager, search the on-line Help
for ‘loading an icon’.

Appendix A Control properties descriptions 51

The icon you specify will be centered over the control. If the icon is larger than the
control, it will get clipped by the control; ArcView does not scale icons. Screen
resolution may also impact the visible display of the icon.

Applies to: Button, Icon box, Tool

Avenue Requests: GetIcon, SetIcon

Invisible Property

Determines if the control is visible on the dialog. Use this property to hide or show
controls on the dialog. This property can be set in a script with the SetVisible request.
Making a control panel invisible will also hide all the controls on that panel. The dialog
itself is a control panel; thus to hide all the controls on a dialog, you could do this:

aDialog.GetControlPanel.SetVisible(false)

Applies to: Button, Check box, Combo box, Control panel, Icon box, Label button, List
box, Radio button, Slider, Text box, Text label, Text line, Tool

Avenue Requests: IsVisible, SetVisible

Label Property

The visible text string that annotates the control. For example, on a label button, this is
the text on the button; on a check box, this is the text next to the check box. If you don’t
want a label on your control, highlight the property in the Control Properties dialog and
press the delete key.

If you want a multiline text label, here’s a tip. Double-click the Label property to
display the dialog that allows you to enter a text string. Select all the text and press the
delete or backspace, then immediately press the return key. You can now use the arrow
keys on the keyboard to enter text on two lines. If you need more than two lines of text
for your label, use the keyboard shortcut to copy and paste the return character to get
the number of lines you need. Then, use the arrow keys to enter in text. Another way to
create a multiline label is with Avenue code. For example, you could include this in a
dialog’s Open script:

l = self.FindByName("aTextLabel1")
l.SetLabel("First line"+NL+"Second line"+NL+"Third line")

The effect a multiline label has on a control will vary.

Applies to: Check box, Combo box, Control panel, Label button, Radio button, Text
box, Text label, Text line

Avenue Requests: GetLabel, SetLabel

52 Using the ArcView Dialog Designer

LabelSize Property

Specifies the width in pixels that the label associated with a text line will occupy. When
set to 0 (the default value), the length of the label determines the amount of space
required for the label.

Typically, you’ll set this property to when you want to align the type-in area of several
text line controls, making the type-in area the same width. For example, add two text
line controls and set the LabelSize for both to 100. This will make the width of both
labels equivalent, regardless of the length of the actual text string. Common settings for
this property will range from 25 to 500 pixels, depending upon the size of your dialog.
The label will be truncated if the width you specify is not sufficient enough to display
the entire text of the label.

Applies to: Text line

Avenue Requests: GetLabelSize, SetLabelSize

Lower Property

Specifies the lower bound of the slider’s range. The default value is 0. After adjusting
the slider’s range, make sure the ValueIncrement property is set appropriately for the
range; if not, it can prevent the slider handle from moving.

Applies to: Slider

Avenue Requests: GetLower, SetLower

MainIncrement Property

Adds tick marks along either the bottom or the right side of the slider, depending upon
the slider orientation. The value you specify represents the distance between the tick
marks in the units of the slider and should be appropriate for the range of the slider. For
example, the default value of 2 on a slider with a range from 0 to 10 would create a tick
mark every two units along the slider. However, a value of 2 is not appropriate where
the range of the slider is from 0 to 1,000. Set the property to 0 to remove the tick marks.

This property has no effect on the slider’s current value and is only used to enhance the
display of the slider. Some operating systems don’t support tick marks on sliders.

Applies to: Slider

Avenue Requests: GetMainIncrement, SetMainIncrement

Appendix A Control properties descriptions 53

Modal Property

Makes the dialog the focus of input and prevents the user from working with any other
part of ArcView (or any other dialogs) while the modal dialog is displayed. Typically,
you use a modal dialog to solicit required information from a user before beginning
some process or activity. In order to continue, the user must explicitly dismiss the
dialog. Thus, your dialog must provide a method for dismissing itself, such as an OK or
Cancel button with the appropriate Avenue code behind it.

While designing your dialog, you can dismiss it by pressing the escape key if you
haven’t yet implemented a method for dismissing it. When you’ve finished editing your
dialog and are ready to incorporate it into your application, you may want to set the
EscapeEnabled property to false so that a user of your dialog can’t dismiss it by
pressing escape.

Applies to: Dialog

Avenue Requests: IsModal, SetModal, SetModalResult

NextControl Property

Specifies the control that will receive keyboard focus when the tab key is pressed. You
might set this property when, for example, you have several text line controls on your
dialog and want your user to be able to use the tab key to move between them in a
specific order.

You can set the NextControl to one of the following controls: a text line, text box, list
box, combo box, or slider. Setting the NextControl of a control to itself stops the tab
key from moving when that control is encountered.

Applies to: Combo box, List box, Slider, Text box, Text line

Avenue Requests: GetNextControl, SetNextControl

Open Property

Specifies the name of the script to execute when the dialog is opened.

This script will typically establish starting values for controls, broadcaster–listener
relationships between controls to handle Update events, and a client/server relationship
between a dialog and a document. For example:

aTextLine = self.FindByName("aTextLine1")
'initialize a control
aTextLine.SetText("")

54 Using the ArcView Dialog Designer

'set up listeners for update events
aButton1 = self.FindByName("aLabelButton1")
aButton2 = self.FindByName("aLabelButton2")
aButton3 = self.FindByName("aLabelButton3")
aTextLine.SetListeners({aButton1, aButton2, aButton3})
'set up a server document
self.SetServer(av.GetProject.FindDoc("view1"))

The self object of the Open script is the dialog.

Applies to: Dialog

Avenue Requests: GetOpen, SetOpen

ReadOnly Property

Creates a read-only slider, text box, or text line control that can’t be modified by dialog
interaction. The default value of this property is false. Set the value to true to create a
read-only control. The information displayed by the control can still be modified in
your scripts using the appropriate Avenue requests.

Applies to: Slider, Text line, Text box

Avenue Requests: IsReadOnly, SetReadOnly

Resizable Property

Controls whether a dialog can be resized once displayed.

If you want to prevent a user from changing the size of your dialog, set this property to
false. You might consider making a dialog resizable when, for example, you have a list
box on the dialog and want to show more of the list when the dialog is enlarged. In
addition to making the dialog resizable, you’ll also need to specify how the list box
should respond when the dialog is enlarged. You do this through the Control Fasteners
dialog, available on the Control menu of the dialog editor.

Applies to: Dialog

Avenue Requests: IsResizable, SetResizable

Select Property

Specifies the name of the script to execute when a user interactively selects a row in a
combo box or when a user interactively selects or deselects a cell in a list box. Select
scripts typically inform other controls, or other parts of ArcView, that the selection has

Appendix A Control properties descriptions 55

changed. For example, making a selection might cause a button to activate. This script
does not run when you programmatically select a row through another script associated
with the dialog.

With a list box, you can also run scripts when the user

• Double-clicks a cell; set the Apply property or use the SetApply request.

• Selects a specific cell or group of cells; use the SetRangeSelect request.

• Double-clicks a specific cell or group of cells; use the SetRangeApply request.

Applies to: Combo box, List box

Avenue Requests: GetSelect, SetSelect

Selected Property

Sets the initial state of the check box when you first display the dialog. Once you
change the selected state of the check box, it will retain that state when you display the
dialog again. If you want the check box to initialize to a particular selected state each
time you display the dialog, you’ll need to add a line of code such as this to the dialog’s
Open script:

self.FindByName("aCheckBox1").SetSelected(true)

Applies to: Check box

Avenue Requests: IsSelected, SetSelected

SelectionStyle Property

Defines how you can make selections from the list box. You can define the list box so
that you can select

• A single cell.

• A single row.

• A single column.

• A single range of cells.

• Multiple ranges of cells.

56 Using the ArcView Dialog Designer

Making a selection in the list box will clear any previous selection, except with the
multiple range option. With this option, holding down the shift key will add to the
selection.

You can run scripts in response to selections made in the list box. To run a script when
the user

• Selects any cell, set the Select property or use the SetSelect request.

• Double-clicks a cell, set the Apply property or use the SetApply request.

• Selects a specific cell or group of cells, use the SetRangeSelect request.

• Double-clicks a specific cell or group of cells, use the SetRangeApply request.

Applies to: List box

Avenue Requests: GetSelectionStyle, SetSelectionStyle

ServerActivated Property

The name of the script to execute when the dialog’s server document becomes active.
For example, suppose you wanted to enable the controls on the dialog when its server
document became active. You could include this code in the ServerActivated script:

self.GetControlPanel.SetEnabled(true)

where the self object is the dialog. This property does not apply when the server is a
VTab.

This script runs whenever the server document becomes active, regardless of whether
the dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("view1"))

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerActivated, SetServerActivated, SetServer

Appendix A Control properties descriptions 57

ServerClosed Property

The name of the script to execute when the dialog’s server document window is closed.
For example, if you want to close the dialog when the server document is closed. The
ServerClosed script would contain

self.Close

where the self object is the dialog. This property does not apply when the server is a
VTab. This script runs whenever the server document is closed, regardless of whether
the dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("view1"))

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerClosed, SetServerClosed, SetServer

ServerDeactivated Property

The name of the script to execute when the dialog’s server document becomes inactive.
For example, suppose you wanted to disable the controls on the dialog when its server
document became inactive. You could include this code in the ServerDeactivated script:

self.GetControlPanel.SetEnabled(false)

where the self object is the dialog. This property does not apply when the server is a
VTab. This script runs whenever the server document is deactivated, regardless of
whether the dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("view1"))

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerDeactivated, SetServerDeactivated, SetServer

58 Using the ArcView Dialog Designer

ServerDefinitionChanged Property

The name of the script to execute when the definition of the dialog’s server VTab is
changed. This script runs whenever the definition changes, regardless of whether the
dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("Table1").GetVTab)

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerDefinitionChanged, SetServerDefinitionChanged,
SetServer

ServerOpened Property

The name of the script to execute when the dialog’s server document window is opened.
For example, if you want to open the dialog when the server document is opened, you
could include this code in the ServerOpened script:

self.Open

where the self object is the dialog. This property doesn’t apply if the server is a VTab.
This script runs whenever the server document opens, regardless of whether the dialog
is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("view1"))

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerOpened, SetServerOpened, SetServer

Appendix A Control properties descriptions 59

ServerRecordsAdded Property

The name of the script to execute when records are added to the dialog’s server VTab or
Table document. This script runs whenever records are added to the server document,
regardless of whether the dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("Table1"))

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerRecordsAdded, SetServerRecordsAdded, SetServer

ServerRecordsDeleted Property

The name of the script to execute when records are deleted from the dialog’s server
VTab or Table document. This script runs whenever records get deleted from the server
document, regardless of whether the dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("Table1"))

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerRecordsDeleted, SetServerRecordsDeleted, SetServer

ServerSelectionChanged Property

The name of the script to execute whenever the selection changes in a dialog’s server
VTab (or FTab). For instance, this can occur when a user of the dialog:

• Selects a feature using theme selection tools

• Selects a record in a table

60 Using the ArcView Dialog Designer

• Deletes a data element from a chart

• Performs theme on theme selection

• Interacts with the Query Builder

This script runs whenever the selection changes in the server document, regardless of
whether the dialog is open or closed.

A dialog can establish a client/server relationship with a particular document or VTab.
You typically establish the server document in the dialog’s Open or DocActivate scripts
using the SetServer request:

self.SetServer(av.GetProject.FindDoc("table1").GetVTab)

However, if an individual control needs to change the server, the SetServer request may
instead be part of a script attached to that control.

Applies to: Dialog

Avenue Requests: GetServerSelectionChanged, SetServerSelectionChanged, SetServer

Size Property

Specifies the length of the string the text line or text box can accept. The default value
of 0 indicates that the control will accept an unlimited number of characters. Set this
property when you need to restrict the number of characters that should be entered into
the control.

Applies to: Text box, Text line

Avenue Requests: GetSize, SetSize

StepButtons Property

Adds or removes step buttons from the slider. The default value is false, or no step
buttons. When set to true, the slider displays step buttons providing another method for
setting the slider value. When you click a step button, the slider will move by the value
specified in the ValueIncrement property. If ValueIncrement is 0, the slider will move by
the value specified in MainIncrement. If this is also 0, the slider will move 10 percent
of the interval. Step buttons are not available under the UNIX operating system.

Applies to: Slider

Avenue Requests: HasStepButtons, ShowStepButtons

Appendix A Control properties descriptions 61

Tag Property

Stores any additional text string that’s needed for a control. ArcView does not use the
Tag property, so you can use it without affecting any of the control’s other property
settings or causing any other side effects. The Tag property can only reference a string;
use an ObjectTag to reference other objects.

Applies to: Button, Check box, Combo box, Control panel, Icon box, Label button, List
box, Radio button, Slider, Text box, Text label, Text line, Tool

Avenue Requests: GetTag, SetTag

Text Property

Specifies the text string to display in the text line or text box when the dialog is first
displayed. If you change the text string, the dialog will retain the value when
subsequently displayed. To initialize the text string each time you display the dialog,
you need to add a line of code like this to the dialog’s Open script:

self.FindByName("aTextLine1").SetText("Initial value")

ArcView does not check whether the text you supply for this property matches the text
type you specify with the TextType property. For example, if you enter a character
string here but define the text line to accept only integers, the character string will
display on the dialog, but the end user will need to erase the character string before they
can enter an integer.

Applies to: Text box, Text line

Avenue Requests: GetText, SetText

TextType Property

Defines the types of characters that a text line can accept: alphanumeric characters,
integers, or only real numbers. The first will be left-justified; the latter two will be
right-justified.

If you specify a default text string with the Text property, it’s a good idea that the string
matches the type you specify here.

Applies to: Text line

Avenue Requests: GetTextType, SetTextType

62 Using the ArcView Dialog Designer

Title Property

Sets the title for the dialog. If you don’t want a title bar at all on your dialog, set the
HasTitleBar property to false.

Applies to: Dialog

Avenue Requests: GetTitle, HasTitleBar, SetTitle

Update Property

Sets the name of the script to execute when an Update event occurs. The Update script
typically performs some operation in response to a change in the dialog that triggers an
Update event. For example, you might use an Update script to enable an OK button on
your dialog once a user provides some input the dialog requires—such as typing some
text into a text line control.

With dialogs, you control when to broadcast an Update event and which controls will
respond to that event. This is different from how the Update property works with
controls on the menu, button, and tool bar. For instance, ArcView broadcasts an Update
event whenever a document is activated. The controls on the menu, button, and tool bar
respond by running their respective Update scripts. In the case of controls on a dialog,
ArcView does not attempt to determine which controls need to respond to the Update
event; it’s up to you to decide when a control’s Update script should be run.

For a given control on your dialog, you specify which other controls should listen to it.
When you want to run the Update scripts of the listening controls, you broadcast an
Update event. For example, if you have a dialog that contains a text line and a button,
and you want to dim the button when the text line is empty, you would make the button
a listener of the text line. Typically, you set this broadcaster–listener relationship in the
dialog’s Open script:

'the self object is the dialog
aTextLine = self.FindByName("aTextLine1")
aButton = self.FindByName("aLabelButton2")
aTextLine.SetListeners({aButton})

If the text line is cleared out, it would broadcast an Update event causing the button’s
Update script to execute. For example, the text line’s Empty property would reference a
script that contained this code:

'the self object is the text line control
self.BroadcastUpdate

It would then be the responsibility of the button’s Update script to dim the button.

Appendix A Control properties descriptions 63

A control can have many listeners. Thus, if other controls on your dialog also need to
respond, you can add them to the list. For example, if you have a few more buttons on
your dialog:

aTextLine.SetListeners({aButton1, aButton2, aButton3})

The list of listeners is dynamic—you can add or remove controls at any time.

aTextLine.AddListener(aButton4)

Listeners need not be confined to a particular dialog either. They may be part of other
dialogs or inclued on ArcView’s menu, button, and tool bar.

Applies to: Button, Check box, Combo box, Control panel, Dialog, Icon box, Label
button, List box, Radio button, Slider, Text box, Text label, Text line, Tool

Avenue Requests: BroadcastUpdate, GetListeners, GetUpdate, SetListeners, SetUpdate

Upper Property

Specifies the upper bound of the slider’s range. The default value is 10.

After adjusting the slider’s range, make sure the ValueIncrement property is set
appropriately for the range. An inappropriate ValueIncrement can prevent the slider
handle from moving.

Applies to: Slider

Avenue Requests: GetUpper, SetUpper

Value Property

Sets the initial value for the slider the first time you display the dialog. The default
setting for this property is 0. Once you change the slider’s value, it will retain that value
when you display the dialog again. If you want the slider to initialize to a particular
value each time you display the dialog, you’ll need to add a line of code such as this to
the dialog’s Open script:

self.FindByName("aSlider1").SetValue(4)

You can also set the slider’s value equal to a percentage of the slider’s interval with the
SetValuePercentage request:

self.FindByName(“aSlider1”).SetValuePercentage(50)

Applies to: Slider

Avenue Requests: GetValue, SetValue, GetValuePercentage, SetValuePercentage

64 Using the ArcView Dialog Designer

ValueIncrement Property

Restricts the values that a slider can take on. The default value is 1. When
ValueIncrement is 0, the slider can assume any real number defined within its range.
When ValueIncrement is greater than 0, the slider’s value will always be in the form

slider lower bound + (i * ValueIncrement)

where i is a positive integer. For example, suppose you want to restrict a slider’s value
to an integer. Given a lower bound of 0 and an upper bound of 10, setting
ValueIncrement to 1 allows the slider to assume all integer values between 0 and 10. A
ValueIncrement of 2 restricts values to even numbers. To restrict the slider to odd
numbers, you’d have to set the slider’s lower bound to 1 and keep ValueIncrement at 2.

Applies to: Slider

Avenue Requests: GetValueIncrement, SetValueIncrement

VerticalScroll Property

Adds a vertical scroll bar to a list box or text box.

If a text box does not have a vertical scroll bar, you can still scroll the text by dragging
the mouse through the text box. If a list box does not have a vertical scroll bar, the
height of its rows will be stretched or compressed to fit the height of the list box. To
avoid this behavior set a row height for each row explicitly or add a vertical scroll bar.

Applies to: List box, Text box

Avenue Requests: HasVerticalScroll, SetVerticalScroll

VisibleBorder Property

Determines whether the control panel will have a visible border. When True, the control
panel will have a line drawn around its perimeter.

Applies to: Control panel

Avenue Requests: HasVisibleBorder, SetVisibleBorder

65

A P P E N D I X B

Object model diagram

The Dialog Designer implements several new classes that are incorporated

into ArcView when you load the extension. Understanding the relationship

between these classes will help you build applications with dialogs.

This appendix presents the object model diagram for the Dialog Designer

and briefly describes each class.

66 Using the ArcView Dialog Designer

Object model

ControlSet

GraphicGraphicList

ControlGraphicControl

Layout

DialogEditor

Dialog

ListBox

ComboBox

IconBox

RadioButtonCheckBox

TextBoxTextLineSlider

TextLabel

Tool Button

LabelButton

ControlPanel

Window

PropWin

View

Appendix B Object model diagram 67

Class descriptions

Button

A Button control displays an icon and recognizes the Click event. A Click event occurs
when the user clicks on a button or when an Avenue script issues the button Click
request. Buttons can be used on the button bars of DocGUIs, in dialogs, or as graphic
controls on views and layouts.

CheckBox

A CheckBox control displays a Boolean value. A true value is represented by a checked
box. A false value is represented by an unchecked box.

ComboBox

A ComboBox control provides an interface for selecting an object from a list of related
objects. A combo box consists of a set of rows, each of which is associated with a single
object of any kind. One row is always presented to the user. This is the selected row.
When the user wants to select another row, they click on a part of the combo box in
order to drop down a single-column scrolling list that shows all rows in the combo box.
The contents of a combo box can be defined from a list, dictionary, or VTab.

Control

The Control class is the abstract class defining the ArcView user interface controls:
menu choices, buttons, tools, spaces, and control sets. The Dialog Designer extension
adds more controls that can be used in dialogs or as graphic controls on views and
layouts.

ControlPanel

A ControlPanel is a kind of control set that organizes controls in two dimensions inside
a Dialog, rather than linearly inside a DocGUI. When you add a control to a control
panel, you specify the bounding box for that control (rather than its index relative to
other controls).

68 Using the ArcView Dialog Designer

ControlSet

ControlSet is the abstract class that defines general properties and methods for
collections of controls. To display a control in the DocGUI, it must belong to a control
set. Each DocGUI contains three control sets: a menu bar, a button bar, and a tool bar.
In dialogs, controls can be organized in a control set called a control panel.

Dialog

The Dialog class lets you organize a single task or set of related tasks onto a separate
window, much like you can organize related tasks under a particular menu item or on
the button bar. A dialog is a modal or modeless window that contains controls. This
window is not clipped to the ArcView application window. It can be dragged anywhere
on the computer screen. You can create dialogs interactively using a dialog editor
document or by sending the Make request to the Dialog class, then add controls to it
using other requests.

DialogEditor

The DialogEditor class, a subclass of Layout, lets you interactively create dialogs.
Instead of manipulating graphic shapes and frames positioned on a “page” as in a
layout, you manipulate graphic controls positioned inside a “dialog.” The frame inside
the dialog editor window represents the visible portion of the dialog. You can size the
frame as needed to fit all your controls.

GraphicControl

A GraphicControl is a kind of graphic that lets you place control objects on view or
layout documents. By using graphic controls in these documents, you can merge the
controls that manipulate the map with the map itself, providing a more intuitive and
interactive experience for a map user.

IconBox

An IconBox control displays an icon. The user cannot interact with an icon box. An
icon box is associated with an ArcView Icon object. Refer to the class description in the
on-line help for a list of the supported image types.

LabelButton

A LabelButton control is a button that displays text rather than icons. Label buttons
recognize the Click event. Label buttons are found at the top of the project window.
They can also be used in dialogs or as graphic controls on views and layouts.

Appendix B Object model diagram 69

ListBox

A ListBox control provides an interface for examining data organized into multiple
rows and columns. Each row and column intersection is called a cell. The object
attached to a cell is referred to as a cell value. Zero or more cells can be selected. The
contents of a list box can be defined from a list, dictionary, or VTab.

PropWin

A PropWin is a modeless window that displays properties for controls. You can access
this window by double-clicking on a control in a dialog, view, or layout. In your scripts,
you can access it using the class request PropWin.The.

RadioButton

A RadioButton control cooperates with other radio buttons to show the selected choice
among a small number of choices. Each radio button has a label that describes the
choice. Place related radio buttons in a control panel; the control panel ensures that
only one radio button in the group is selected at a time.

Slider

A Slider control displays a selected value in a range of real values defined over a finite
interval. A slider can be oriented either vertically or horizontally and has a handle that
marks the current value.

TextBox

A TextBox control presents an interface for displaying and editing multiple lines of
text.

TextLabel

A TextLabel control annotates a dialog, providing titles and instructions for using the
dialog. The user does not interact with a text label.

TextLine

A TextLine control is a single line of editable text, optionally including a label.

70 Using the ArcView Dialog Designer

Tool

A Tool control provides a means of interacting with the document display. A tool
supports a special event, the Apply event. The Apply event is triggered whenever the
user clicks on the active document display. Tools display icons. Tools can be used on
the tool bars of DocGUIs, in dialogs, and or as graphic controls on views and layouts.

71

A

Activate property 20, 43
AlwaysOnTop property 43
Apply property 13, 22, 43
AuxIncrement property 44
Avdlog.dat 32
Avdlog.dll 26, 27, 29, 32, 33

B

Broadcasters and listeners 17
Button (class) 67
Buttons

defined 5
disabling. See Disabled property
hiding. See Invisible property
icon. See Icon property
naming 11
properties 36
scripts, executing.See Click

property

C

CanUnload script 29
Changed property 44
Check boxes

defined 5
disabling. See Disabled property
hiding. See Invisible property
initializing. See Selected property
naming 11
properties 36
scripts, executing

on click. See Click property
CheckBox (class) 67
Click property 9, 13, 45
Click scripts 17
Client/Server relationships 18
Close property 45
Closeable property 45
Combo boxes

defined 5
defining contents of 19

Index

Combo boxes (continued)
emptying 28
hiding. See Invisible property
naming 11
properties 37
scripts, executing

on selection.See Select
property

used 16
ComboBox (class) 67
Compiling a dialog 10
Control (class) 67
Control Fasteners 16
Control panels

borders.See VisibleBorder
property

defined 5
disabling. See Disabled property
naming 11
properties 37

Control properties 4
and Avenue requests 9
PropWin (class) 69
reference 36
setting 9

Control Tools 22
ControlPanel (class) 67
Controls

adding
to dialogs 8, 12
to views and layouts 22

as GraphicControl 23
defined 4
disabling 13.See also Disabled

property
enabling 14
finding by name 17
initializing 13
list of 5
naming 9, 11
responding to pan/zoom 22
scripts, attaching to 9
sizing at run time 16

Controls (continued)
status bar help 49
tab order.See NextControl

property
tool tips 49
updating 17.See also Update

property
ControlSet (class) 68
Cursor property 45

D

Data
linking a dialog to 2, 15, 18

DDE (Dynamic Data Exchange) 3
DefaultButton property 45
Dialog (class) 68
Dialog Designer

loading
automatically with project 10
through Extension Manager 8

object model diagram 66
Dialog Editor

compiling 10
creating 8
described 4
finding in project 15
placing controls on a 8

Dialog.avx 32, 33
DialogEditor (class) 68
Dialogs

compiling 10
creating 8, 12
defined 2
delivering

in a project 33
in an extension 26–33
in default.apr 34
in system default.apr 34

dismissing 9.See also Close
property; EscapeEnabled
property

finding 14
finding named controls on 17

72 Using the ArcView Dialog Designer

Dialogs (continued)
focusing input on.See Modal

property
initializing 13. See also Open

property
linking to data 2, 18
naming 10
on-line help, displaying from 49
opening 19
properties 37
responding to a document 20.See

also ServerActivated property
responding to active document

20. See also DocActivate
property

responding when activated 20.See
also Activate property

running 10, 14, 19
title 13
updating controls on 17.See also

Update property
window, keeping on top.See

AlwaysOnTop property
Disabled property 46
Disabling controls 13
DLLs

avdlog.dll 26, 27, 29, 32, 33
dlogcore.___ 33
DocActivate property 16, 20, 46
DocGUIs

delivering in extensions 32
Drag property 47
Dynamic Data Exchange (DDE) 3

E

Empty property 47
Enabling controls 14.See also

Disabled property
EscapeEnabled property 48
Extension Manager 8
Extensions

building your own 26–33
delivering DocGUIs 32
dialog.avx 32, 33
distributing files 32
dlogcore.___ 33
loading the Dialog Designer 8
removing object tags 31

F

FieldNamesVisible property 16, 48
FocusLost property 48

G

Graphic controls 23
GraphicControl (class) 68

H

HasTitleBar property 10, 48
Help

getting technical support 6
setting on control 49
setting on dialog 49

Help property 49
HelpTopic property 49
HiddenText property 50
Horizontal property 50
HorizontalScroll property 13, 16, 50

I

Icon boxes
defined 5
hiding. See Invisible property
icon. See Icon property
naming 11
properties 38
supported image formats 38

Icon property 50
IconBox (class) 68
Install script 28
Interface

attaching a dialog to the 14, 19
Internet

ESRI's home page 6
Invisible property 51

L

Label buttons
defined 5
disabling 13.See also Disabled

property
enabling 14
hiding. See Invisible property
naming 11
properties 39
script, attaching to 9

Label buttons (continued)
scripts, executing.See Click

property
text label, setting 9
used 13

Label property 9, 13, 16, 22, 51
LabelButton (class) 68
LabelSize property 52
Layouts

activating controls on 23
placing controls on 3, 21

List boxes
adding elements to a 14
defined 5
disabling. See Disabled property
displaying tabular data in 18
emptying 13, 28
field names, showing on.See

FieldNamesVisible property
hiding. See Invisible property
naming 11
properties 39
scripts, executing

on double-click.See Apply
property
on selection.See Select
property

scroll bars.See HorizontalScroll
property; VerticalScroll
property

selecting from.See SelectionStyle
property

setting column widths 18
sorting elements in a 14
used 13, 16

ListBox (class) 69
Listeners and broadcasters 17
Load script 28
Loading the Dialog Designer 8
Lower property 52

M

MainIncrement property 52
Make script 26
Modal property 53

N

Naming
controls 11

Index 73

Naming (continued)
dialogs 10
scripts 10

NextControl property 53

O

Object model diagram 66
Object tags

removing from extensions 31
Open property 13, 16, 53
Open script 13
Opening a dialog 19

P

Passwords.See HiddenText property
Projects

as extension source 26
delivering dialogs in 33
removing dialog editors 33

Properties
of controls 43

PropWin (class) 69

R

Radio buttons
defined 5
disabling. See Disabled property
hiding. See Invisible property
naming 11
properties 39
scripts, executing

on click. See Click property
RadioButton (class) 69
ReadOnly property 54
Remote Procedure Calls (RPC) 3
Resizable property 54
RPC (Remote Procedure Calls) 3
Running a dialog 10
Running controls on views and

layouts 23

S

Script Manager 9
Scripts

attaching to controls 9
click 17
for extensions

canunload 29

Scripts (continued)
for extensions (continued)

install 28
load 28
make 26
uninstall 30
unload 30

naming 10
update 17

Select property 13, 16, 54
Selected property 55
SelectionStyle property 55
Self object 13, 29
ServerActivated property 20, 56
ServerClosed property 20, 57
ServerDeactivated property 20, 57
ServerDefinitionChanged property

20, 58
ServerOpened property 20, 58
ServerRecordsAdded property 21, 59
ServerRecordsDeleted property

21, 59
Servers 18

clearing 28
events on 20
setting 19

ServerSelectionChanged property
16, 19, 20, 59

Size property 60
Slider (class) 69
Sliders

defined 5
disabling. See Disabled property
hiding. See Invisible property
initializing. See Value property
naming 11
orientation.See Horizontal

property
properties 40
restricting values.See

ValueIncrement property
scripts, executing

on click. See Click property
on drag.See Drag property

tick marks, adding.See
AuxIncrement
property; MainIncrement
property

upper bound.See Upper property
Starting the Dialog Designer 8

Status bar help, setting 49
StepButtons property 60

T

Tabular data
displaying in list boxes 18
responding to changes in 20

Tag property 61
Text boxes

defined 5
disabling. See Disabled property
hiding. See Invisible property
limiting characters.See Size

property
naming 11
properties 40
scripts, executing

on click. See Click property
when emptied.See Empty
property
when text changes.See
Changed property

scroll bars.See HorizontalScroll
property; VerticalScroll
property

Text labels
defined 5
disabling. See Disabled property
hiding. See Invisible property
naming 11
properties 41

Text lines
defined 5
disabling. See Disabled property
hiding. See Invisible property
limiting characters.See Size

property
naming 11
passwords, entering in 50
properties 41
scripts, executing

on click. See Click property
when emptied.See Empty
property
when focus lost.See FocusLost
property
when return key pressed.See
Apply property
when text changes.See
Changed property

74 Using the ArcView Dialog Designer

Text lines (continued)
tabbing from.See FocusLost

property
text type, setting.See TextType

property
used 13, 22

Text property 61
TextBox (class) 69
TextLabel (class) 69
TextLine (class) 69
TextType property 61
Title property 13, 16, 62
Tool (class) 70
Tool tips, setting 49
Tools

defined 5
disabling. See Disabled property
hiding. See Invisible property
icon. See Icon property
naming 11
properties 42
scripts, executing

on click. See Click property
when click document.See
Apply property

U

Uninstall script 30
Unload script 30
Update property 16, 62
Update scripts 17

calling
by broadcasting Update event
17
directly 19

Updating controls on dialogs 17
Upper property 63

V

Value property 63
ValueIncrement property 64
VerticalScroll property 64
Views

activating controls on 23
finding controls on 23
placing controls on 3, 21

VisibleBorder property 64
VTabs

as servers to dialogs 18, 20

VTabs (continued)
displaying in a list box 18
responding to a change in selection

19

W

World Wide Web
ESRI's home page 6

	Table of Contents
	Chapter 1: Welcome to the Dialog Designer
	 What is a dialog?
	 Why should you use the Dialog Designer?
	 How does the Dialog Designer work?
	 What controls are available to you?
	 Getting technical support from ESRI
	 Visit ESRI on the Web
	Chapter 2: Quick start tutorial
	 Exercise 1: Creating a dialog and adding a control to it
	 Exercise 2: Making controls work together
	 Exercise 3: Connecting your dialog to data and documents
	 Exercise 4: Adding controls directly to views and layouts
	 What next?
	Chapter 3: Delivering an application with dialogs
	 Incorporating dialogs in an extension
	 Delivering dialogs in a project
	 Creating a personal working environment
	 Creating a system default environment
	Appendix A: Control properties descriptions
	 Control properties
	 Property descriptions
	Appendix B: Object model diagram
	 Object model
	 Class descriptions
	Index

